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by
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Abstract

The objJective of the present study is to establish thermodynamically
valid, non-isothermel stress strain relations for the elastic-plastic
range, and to obtain solutions of typical one-dimensional problems in-
volving unsteady temperatures.

In the first part of the report the entropy balance equation and
the expression for production of internal entropy are considered. The
limitations imposed by the second law of thermodynamics upon plastic
flow rules are investigated, and subsequently a set of non-isothermal

plastic stress strain relations is introduced. It is then shown that

these relations are in accord with thermodynamic irreversibility when-
ever the yield criteria of Tresca and von Mises are used. Moreover, it
is found that the stress strain relations of von Mises are a special
case of the non-isounermal stress straln relations proposed here. An
additional problem concerns the specification of elastic unloading from
a plastic state, and in the presence of a temperature dependent yleld

stress. Precise criteria for elastic loading and repeated plastic
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flow are preserted, thus completing the characterization of the elastic-
plastic respounse.

The second part of the report is cancerned with an application of
the general theory to a problem for the infinite half-space constrained
against lateral motion, and subjected to a heat pulse uniformly applied
over its boundary. In the analysis of this problem the yield criterion
of Tresca is used; the transient and steady stateée solutions for both
strain-hardening and perfectly plastic media, having either a constant
or a temperature dependent yield stress, are presented. The appearance
of elastic and plastic regions of loading and unloading is studied in
some detail, and the residual stresses and deformations are correlated
to the maximum boundary temperature.

The solution of the half-space problem is then extended to related
problems for an infinite plate of finite thickness, and constrained in
the lateral direction. It is shown that expressions for predicting mexi-
mum residual stresses and strains can be obtained directly from the solu-
tion of the half-space problem.

Fumerical results are given ror the case when the material is an
aluninum alloy. In addition, the maximm boundary temperature corres-~
ponding to the recurrence of plastic flow during a second heet pulse
is determined assuming that the conditions produced by the first pulse
have reached a steady state.

Although the problem selected to illustrate the use and implications
of non-isothermel plastic stress strain relations is one-dimensional, the
method of approach and the basic equations may -be used in the analysis of

thermal stress problems in two or three dimensions.
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PART I. THERMODYNAMICS AND THERMOPLASTICITY
Chapter 1. Introduction and Review
1-1 Introduction

The present theory of plasticity is applicable only to problems in
which the effects of temperature on the plastic stress strain relations
may be neglected. In particular, the yield function or functions which
characterize ylelding are assumed to be independent of temperature.

The reason for the neglect of non-isothermal problems is the relative
camplexity of the plasticity theory, which would be further increased
by the inclusion of thermal effects.

It is well known that the yleld stress of most engineering mater-
ials decreases with increase in temperature {1.1]%*, [1.2]. As an illus-
tration, we note that for Berryllium the yleld stress decreases from 97
x 103 psi at room temperature to approximstely 20 x 105 psi at 1200 F,
whereas for Inconel X the corresponding decrease is from 112 x 103 psi
to 99 x 103 psi [1.3]. If the influence of temperature on the yield
function and on the stress strein relations is included, it is possible
that the stress may decrease rather than increase with the increase of
total strain. Such an effect would have no counterpert in the isother-
mal plasticity theory.

In general, plastic flow and temperature change occur simultaneous-
ly and influence each other. The search for the possible forms of non-
isothermal plastic stress strain relations is a task of considerable

theoretical and practical value.

# Numbers in brackets refer to the Bibliography.



1-2  goope of the Investigation

This report is essentially divided into two parts, Part 1 being
minly concerned with the general theory of non-isothermal plasticity.
Specifically, in Chapter 2 the First and Second Laws of Thermodynamics,
together with the concept of energy conversiom, are critically discuss-
ed in conjunction with plastic flow. The restriction imposed on the
non-isothermal plastic stress strain relations by the Second Law is in-
vestigated, and the conditions of losding and unloading for strain
hardening and perfectly plastic materials with temperature dependent
yield stress are considered in the first pert of Chapter 3. HNon-iso-
thermal plastic stress strain relations are then presented, and the re-
lations associated with both the Mises and Tresca's yleld criteria are
shown to satisfy the Second Law of Thermodynamics. Part 1l is devoted
to the application of the non-isothermal flow rules developed in Part 1
to 1llustrative problems. The response of an infinite half space, con-
strained against lateral motion, to a wniformly applied heat pulse over
its boundary is considered. The medium of the half space is assumed to
be elastic, linearly strain hardening, and having & yield stress vhich
varies linearly with temperature. BSubsequently the cases of elastic,
perfectly plastic medium with & constant or tempersture dependent yield
stress are discussed. Finally, the method of solution is applied to a
plate of finite thickness in order to cbtain an estimate on the dimen-~
sions of the plastically deformed region, since in the half space prob-
lem the dimension of length remains arbitrary. One of the faces of the
plate is assumed to be subjected to a wniform heat pulse, whereas the
other face is either insulated or maintained at zero temperature. |
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Numerical cciputn.tiou are presented for an aluminum alloy, and illus-
trate the trends in the variation of transient and residwal stresses,
streins and displacements. Of particular interest are the dimensions
of plastically deformed regions as determined by the maximnm amplitudes
of the heat pulse.

1-3 Review of Literature

A set of non<isothermal stress strain relations for plasticity was
recently proposed by Prager [1.4]; the consistency of these relations
with thermodynamic principles has not been investigated, however the
work of Prager has been further elaborated by Boley [1.5] and Naghdi
(1.6].

Vakulenko [1.7], [1.8] and Ziegler [1.9] have both attempted to
formulate the non-isothermal plastic stress strain relations from the
point of view of irreversible thermodynamics. A short summary of the
basic concepts of this subject may be found in the writings of Freuden-
thal [1.10], Naghdi [1.11] and Gregarian [1.12]; the fundamentals of
irreversible thermodynamics are presented in the well-known texts of
Prigogine [1.13], Callen [1.14] and DeGroot [1.15]. Vakulenko and
Ziegler start with the assumption that the generalized forces, e.g.
stresses, are linearly related to the genersalized fluxes, e.g. plastic
strain rates, although the validity of this assumption is not immediate-
ly obvious. Both authors consider the plastic power as the only quan-
tity associated with the entropy production during non-isothermal plas-~
tic deformation; in particular, Ziegler assumed that the stress and plas-
tic strain rete can be derived from two potentials the sum of which is
equated to the plastic power. Yor a strain hardening lodi\n, Valkulenko



derived a flow rule from a plastic potential which was found to be &
function of the plastic power, the free energy density and anocther
stress potential, but made no reference to the form wvhich the flow rule
would assume during unloading and neutral change of state of the medium,
nor wvas there any mention of the relation between a yield function and
the flow rule. Although highly interesting, the researches of Vakulen-
ko and Ziegler are still on the nautre of exploratory attempts.
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Chapter 2 Thermodynamics and Plastic Deformetion

2-1 Introduction

The subject of thermodynamics is the study of energy and entropy
changes. Specifically, the first law of thermodynamics is concerned
with energy belance, vhereas the second lawv characterizes the irrever-
sibility of deformations through the Clausius-Duhem inequality. Any
process, reversible or irreversible, is invariably governed by these
two laws.

We shall establish in wvhat follows the necessary thermodynamic
concepfs and develop appropriate forms of the first and aegond laws of
thermodynamics. For convenience, and without loss of generality, we

employ rectangular Cartesian coordinates throughout.

2-2 The First Iaw of Thermodynamics

The First Law of Thermodynamics expresses the condition of energy
balance and, specifically, states that the time-rate of change of the
total energy in a body is equal to the rate of supply of necha.nictl and
heat energles. We denote the mechanical power of external forces by P

and express the flux of heat into the body D as

[ 9 By 8 = { g 0 ()

vhere q 1s the heat flux vector, n 1s the outer normal of the
boundary B of the region D, and do, dT are surface and volume
elements respectively.

The First Lav may then be stated as follows,




P ke G 0+

- T = K
P\[qi,id +4A

where K is the material time-rate of the kinetic energy K, and

AN is the material time-rate of the total internal energy.

f PV vy art N

D

Since

o=

where £ 1is the mass density, and \A the particle velocity, it
follows that

K =f fa, v, d% (v)
D

FRere ai denotes the particle acceleration defined by

The mechanical power P 1s given by

p=f'riv1dn +f pL, v, dx (c)
B D
vhere T, and f, are the camponents of the surface tractions T

and body force 'f-, respectively. The stress tensor 7 and the

1

stress vector 'ri are related by the equation
T = % n

i 373

which, vhen substituted into (c) ylelds

P=f [« Ty, * pL,) v, + M vi“,]d‘l' (a)
D



|
?

ot e

after using the divergence theorem for the surface integral. Ry virtue
of the equation of motiom,

T,y t Pf e ey (e)
(a) reduces to
P= f [m1 v, + 't':‘..1 vi,J] as (2)
D

Formally, we decompose the velocity gradients \/] 3 into symmetric and
?
antisymmetric parts,

V1,5 = 413 * Yy

vhere,

1 . L -
TR A WA FUE AL TR AN R RUBIL

are referred to as defcimation rate and vorticity, respectively.

From (b) and (f) now follows

g-k+ftiaa“a-.- (n)
D

S8ince the stress tensor is symmetric, we have that

riJ wiJ = 0
Therefore, letting
A = f p A AT (i)

RV TR D Tt
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vhere A 1s the rate of internal energy density, we arrive at the form
2
[2.1), (2.5, [2.3], [2.4)

PA+ Qg = Ty, di.j (2.2.2)
of the law of conservation of energy. It is pladsible to write
r=U+g (3)

where U is the time rate of a function U of elastic strain ei:)
and the entropy density s, whereas § represents the time rate of
internal energy due to plastic deformation, and is not the time rate of
a state function since plastic deformation is a path dependent process.
Then

pt}+p¢+ 4y g = Ty d:l,j (2.2.3)

Equation (2.2.3) is a representation of the principle of balance of
mechanical and thermal energies in a form that is most convenient for

subsequent investigation.

2-3 Heat Conduction Equation and the Entropy Balance Equation
We assume that the energy U in equation (Jj) of the preceding sec-

tion is a function of the elastic strain eiJ and the entropy s, thus
U = U (eid ) B) (2’3‘1)

We also adopt the customary form of the equations of state [2.5],
(2.6],

U N
1’13 = p B—E-;J s Tw : (2.3-2)
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In the case of small deformations and temperature changes, the
function U may be approximated by the first tems of a Taylor's ex-
pansion about some reference state. Teking the values of U, 1’13,‘

eid, T and 8 at the reference state to be zero, we obtain
U (A82+ 2080 + 707+ 2ue,, £,,) (2.3.3)
2p i) "1

By (2.3.2) and (2.3.3), it follows that

T=(As+dd )b

b
T = =-—
peb

13 + 778

+2Aei

1J J J

equivalently,

s=(Tp -bvJ)/A
(2.3.%)

8“'1‘

>lo’

2
b
Tiag,\}aid (7-A—P)+2“6]-J+

where A, b, 7 in (2.3.3) and (2.3.4) are known material properties
and J 1s equal to €4+ Wewrite

2
(7 -2 = A (a)
-a(rr A« (v)

where )\ and p are Lame constants and o 1is the coefficient of
thermal expension.
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Recalling that di j is the total deformation rate, we have

0
4 = £ + 8

vhere & 4y a4 8y, ere the elastic and plastic deformaticn rates,
respectively. Substitution of (2.3.2) and (2.3.5) in (2.2.3) then

Yields:

pT e+ Qg = (Tgy8y,-00) (2.3.6)

Eliminating 8 in (2.3.6) by the first equation of (2.3.4) and replac-
ing 9 4 by -k T 14 through the use of the Fourier's Law of Heat Con-
> 2

duction, we arrive at

pam-xr =B L (5 e -0g)  (23.7)

vhere G(T) = T p/A. In particular for small temperature changes and

deformation we have that

2 2
p. T p. T b .
[o] [o) [+] 0
A T & “kT = (78,09
We take
2
p°T
0o "o k
P = —— 7 s = (e)

vhere o o '1'° are the initial values of the mass density and temperature
respe‘ctively, ¢ 1s the specific heat per unit volume and K 4is the
thermal Adiffusivity. We now have thiree conditions, (a), (b) and (e¢) for



explicitly determining A, b and 7.

The expression given by equation (2.3.7) is lmown as the heat con-
duction equation. The first term on the right hand side of (2.3.7) may
be interpreted as & heat source due to the rate of elastic volume defor-
mation, wvhereas the term in the parentheses represents another heat
source a.ccounting for the dissipation of the inelastic mechanical eher=-
gy into heat during plastic deformation. 8ince plastic volume change
is usually assumed to be zero, the two heat sources represent two dis~
tinctly dii’ferent phenomenons. The term Tbl\‘P/A represents a seconde
order effect which becames noticeable only when the duration of motion

is very long. Neglecting this term, we write
pG(T) T -k T,n = (113 84 =P 7 (2.3.8)

It should be noted that in the dissipation of inelastic mechanical en-

ergy, not all of the plastic power =« is converted into heat;

13 °1
only the part in excess of the work pf required to increase the inter-
nal energy in conjunction with plastic deformation is dissipated. The
function pf may be considered as the rate at which energy is absorbed
by the medium to change its internal structure during plastic deforma~
tlon.

Dividing (2.3.6) by T, and making use of identity
9y LT T4
(_'r—),i = s -q ;5— (2.3.9)

we obtain the equivalent form:

E:
o8+ (‘%’),1 --q ;ﬁl + % (tg 85y = of)  (2.3.10)
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known as the entropy balance equation.
Let us now introduce an external entropy flux 8 o by

D B (2.3.11)

=6 +8 (2.3.12)

where s 1 is defined as the internal entropy production. We note that

by (2.3.10) and (2.3.11),

pagmpe (=), (2.3.13)

The Second lLaw of Thermodynamics in the form of the Clausius-Duhem in-

equality, requires that for any process, the internal entropy produc-

tion must be non-negative [2.7], [2.8], [2.9].

hr

p8+ ( 5 ),1 =0 (2.3.14)

This implies that the right hand side of (2.3.10) must be greater
than zero. Since each term on the right hand side of (2.3.10) repre-
sents an independent phenamenon, we require that these terms be separ-

ately non-negative, thus

- q_i -52'- >0 (205'15)
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and

% (71,j 8,y = P gH>o0 (2.3.16)
By Fourier law of heat conduction

Q = - kT .y

Bquation (2.3.11) therefore requires that

k>0

The inequality represented by (2.3.16) must be satisfied in any
plastic process. It may be further explored by examining the heat con-
duction equation, (2.3.8) for two extreme cases. If all the plastic
power is absorbed by the material, there is no dissipation of mechani-
cal energy into heat. This would imply that the heat source in (2.3.8)

simply vanishes, hence
pd= 113 844 (2.3.17)

On the other hand, if no energy is being absorbed by the material dur-
ing plastic deformation, all the plastic power is converted into heat,

hence
pf# = O (2.3.18)

In reality these two extreme cases are not likely to obtain [2.10].
It has been demonstrated by Hort [2.11], [2.12], Sato [2.13], Taylor,
Farren and Quinney [2.1k], [2.15], [2.16] using calorimetric.measure-

ments of tension, torsion and compression specimens that not all the
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plastic power is converted into heat. For example, Taylor and Farren
[2.17] found in their experiments that for steel 85.5% of the plastic
work was dissipated in the form of heat, hence only 13.5% was absorbed
by the material. The percentage cf the plastic work converted into
heat has been found to range from 90.5 to 92 for aluminum and from 92
t0 93 for single aluminum crystal.

We may postulate that
p = A, 13 %13 (2.3.19)

where Ae is & property of the material which can be experimentally
determined for a particular materlal and assumes values between zero

and one, i.e.,

1>4,>0 (2.3.20)

The cases of Ae being equal to zero and one would correspond to
the two extreme cases represented by (2.3.17) and (2.3.18). Combining

the relations (2.3.16) and (2.3.19), we obtain

1
T Ti3 %y (1 - Ae)>0 (2.3.21)
Since T is always greater than zero, it follows from (2.3.20),

that the requirement (2.3.21) is equivalemt to

Ty siJ> 0 (2.3.22)

We have therefore shown that, on the basis of the assumption
(2.3.19), any flow rule which satisfies relation (2.3.22), will also

satisfy the relation (2.3.16) obtained from the Second Law of thermo-
dynamics.
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Chapter 3 Non-Isothermal Plastic Stress Strain Relations

3-1 Yield Function and the Criterion of Losding, Unloading and Newtrsl
of State

The internal forces of a continuous medium are described by a

stress tensor =< Representing the state of stress by a point in

i3°

six-dimensional spece of T a medium is custamarily said to be

iy’
elastic if the state point lies within a certain convex domein contain-
ing the origin of the stress space. This damain is referred to as the
elastic daomain, and we say that yielding occurs as soon as the state

point reaches the boundary of the elastic domain characterized by

F (TiJ’ T) E) =0 (3'1’1)

Here the yleld function F is assumed to be a function of stress 1’1 3

temperature T, and of a strain hardening parameter ¢ defined by

t
b= [ (o, 0,072 (3.1.2)
(o]

One of the basic assumptions of plasticity theory is that plastic
flow 1s independent of hydrostatic pressure. Therefore, we shall re-

place in (5.1.1) the stress = by the deviatoric stress v Gefin-

i i

ed by
1
v = T - 3 7. 8 (5'1-3)
The equation (3.1.1) now becomes

F (viJ’ T, ¢ ) =0 (3.1.5)



and ve let
¥ (Viy T, t) =2 (vi.)) -H (T, 8) (3.1.5)

where f(vu) is & function of deviatoric stress alone and H is a
function of temperature T and the strain hardening perameter ¢.
Since the medium is assumed to be homogeneous and isotropic, the func-

tion f depends on v

13 through the invariants

l( 2 2 2)

1
I, (vij)'Evij vig=s (v v

(3.1.6)

1

1
J'5 (vi,j) =% Vig Vix Ve = 3 (vl +V

3u v e v?)

Both functions f and H are further assumed to be continuous and
differentiable. We shall adopt as a basic postulate the condition that
H increases monotonically with respect to the strain hardening peres-

meter gf i.e.

-%%- >0 (3.1.7)

Most engineering materials exhibit the characteristic that the
ylield stress decreases with increasing temperature [3.2], [3.3]. We
observe from (3.1.4) and (3.1.5) that during plastic flow the boundary
of the elastic damain expands as a result of strein hardening. and that
this boundary may also contract or expand depending on the rise or fall
of the temperature. If the influence of the temperature on the yleld
stress dominates, it is probable that with increasing temperature the

#A similar postulate is used by Hill [3.1] for the case when the strain
hardening perameter is equal to the total plastic work.
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elastic damain may still be shrinking, even if there is strain harden-
ing. Thus the possibility of a decrease in stress accompanied by an
increase in strain and temperature in the medium cannot be ruled out.
In isothermal plasticity, a medium that exhibits this phenomenon of de-
crease in stress with increase in strain is considered as unstable
since it behaves like an energy source. Furthermore, in isothermal
plasticity the decrease in stress automatically implies unloeding,
vhich is not alwaye the case in non-isothermal plasticity. It is,
therefore, necessary to examine the influence of temperature on the
yield function with care, and determine the conditions under which the
medium undergoes loading, unloeding or neutral change of state.

As is custamary in plasticity theory, we set the yield function
equal to zero during plastic deformation. If the stress point moves
from one plastic state to another in stress space, the plastic strain

increases, and we have the conditioms

F=0 |, F=0 , sm§ o , é> 0
The vanishing of F implies
% vij + g T + ?; g =0 (501.8)

g' - - gg. (3.1.9)
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The equation (3.1.8) now becomes

r : r . &
v,, + T = 3 (3.1.10)
5?13 137 *

Since § is a positive definite quantity, as is clear from the defini-

tion (3.1.2), and recalling the hypothesis (3.1.7), it follows that
%';— ; >0 (3.1.11)

The criterion of loading is thus expressed by

F=0 , F=0 , 8,50 >0

and
g{-— :ria + g% T >0 (3.1.12)
13 |

During unloading, the plastic strain rates become zero and the stress
point moves from the yield surface back into the elastic damain. The

criterion of unloading is expressed by

F<0 o PF=0, PFP<O , 8,=0 , g=0

i
and
;3-’;- 1}13 N g; T<0 (3.1.13)
i]

The neutral change of state is then defined by

F = o 2 F = 0 ’ 31;’ = 0 » ; = 0
and
ar ’ xr .
v + T = o (301-1&)
5?13 13 7



B

Por a perfectly plastic material, the yield function P is a
. funoction of stress v 3 and temperature T alone, i.e.,

the criterion of loeding, unloading and neutral change of state can be
deduced fram (3.1.15), (3.1.10), (3.1.12), (3.1.13) and (3.1.1%) by

setting OH/Ot equal to zero. The results are as follows:

Loading
F=0, F=0 , 8,50 , £>0
and (3.1.16)
a‘ . aF‘ .
v + T=0
&'ij 13 X
Unload
F-<I0 or F=0, 1;'<0 s siJ=O ’ éso
and (3.1.17)
w . aF )
v + T<<Q
5;13 1} xr
Neutral change of state
F=0 , F=0 , s1J=o',g=o
(3.1.18)

oF : oF .
v + T=0
3'613 13 F
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3-2 Development of Non-Isothermal Plastic Stress Strain Relations
In this section both the strain hardening and perfectly plastic

media with temperature dependent yield stress are considered. Since the
elastic response is characterized by Hooke's law with an added tempera-
ture term, attention is directed mainly to the non-isothermal plastic

stress strain relations. It is assumed that an infinitesimal change of

the plastic strain r is caused by infinitesimal change in the devia-

1

toric stress vy and the temperature T. Furthermore, the relations

J
between the rates of plastic strain, stress and temperature must be homo-

geneous of order one so that any results obtained would be indepedent of

the time scale employed. We write

.

B 'i' (3.2.1)

siJBAiJkl Vkl+ 13

3 depend on vi 3’ T and riJ' Incorporating

the conditions (3.1.12), (3.1.13), (3.1.14) for loading, unloading and

where Aijkl and B:I.

neutral change of state into (3.2.1), the coefficients A X and B, p

take on the form

dF
Mg =Cy &= » By=Cy & (3.2.2)

- Cy4 ('Sv_ ”u*%rf'l') if F=0 , F=0 (3,2,3)



R

Q

In viev of (3.1.12), the quentity in the parenthesis in (3.2.3) is al-
ways positive definite during plastic flow. The plastic stress strein
relation must further satisfy two necessary conditions [3.4], namely,
the condition of plastic incompressibvility,

By =0

and the condition that the dire;:tion of principal axes of plastic strain
increment coincides with the direction of the principal stress axes,
since the nediun is assumed to be isotropic. These two conditions are
satisfied by choosing

1
Cy = 5 ng (3.2.4)

1)

wvhere the function g may be considered as a plastic potential, and de-
pends on the invariants J’2 and 0‘5, vhereas D is a function of \] 5
T and {. The most convenient choice of the function g 1s to identi-
fy it with the function f introduced in (3.1.5). Replacing g by £

in (3.2.4) we obtain

19 1, ¥ ar Vs
°13"5F5‘3(Ef;§q5*&§'5?i') (3.2.5)

Fron the definition (3.1.6) of J.

au.ndJ

3 it is found that

&, L
2 P
F, " u aﬁ"ak oY Ta ety (226



From (3.2.6) and (3.2.5) ve readily deduce that C,, = O, and thus the

ii
condition of plastic incompressibility is met. In terms of the principel

rates of stress and strain, the relation (3.2.3) may be written as

l-_ af - w . aE . .
’1'1)8'«'; ‘(5"_1; vk+&-T) for P=0, F=0
vhere s 5? 1‘1 and vy are principal plastic strain rates, principal

total and deviatoric stresses, respectively. The component 31‘/61'1
represents the projection of the gradient of the function f in the

direction of the principal stress Ty

It remains to determine the function D. Recalling that during

plastic flow both F and i? are equal to zero and noting that .; is

1/2

equal to (s ), it is found after substituting (3.2.3), (3.2.5)

13 %13
into (3.1.10) that

3 ar 1/2
D -5 (g;; m) (3.2.7)

We recall that BH/bg was postulated to be positive definite during

Plastic flow, and observe that

1/2
)
a'rm

(bf
9 Tup

is positive definite if the positive root of the quantity in thg paren-
thesis is taken. Therefore the gquantity D is positive definite.
'Combining (3.2.3), (3.2.5) and (3.2.7), the non-isothermal plastic

flow 1lav now becomes



3

° tfor 7€ 0, réo
= 2 o
ll - * .
oH afi Sf lﬁ-(g Vu+g"!)i’orr-0,r-o
¥ 5 .
SE( mi mn)

(3.2.8)

The formula (3.2.8) is a general flow rule for strain hardening media
with temperature dependent yield stress, and can he used to determine
the plastic strain rates once the function ¥ is known.

The two most cammonly used yleld criteria are due to Von Mises and
Tresca respectively. The yleld function defined by the Von Mises yield

ceriterion is given by [3.5], [3.6]

F=f-H
=J, - © (,8) (3.2.9)
vhere
£=3, , H=K (T,

and K 1is the yleld stress in simple shear. The yield function repre-
sented by (3.2.9) is said to be regular because a unique normal can be
defined at every point on the yleld surface. If (3.2.9) is substituted
into (3.2.8), the flow rule associated with the Von Mises yield criter-

ion then takes on the form

[»} forl'so, F<O

)lﬁ_-( %V:l;kl"'%é) for ¥ = 0, i’-O
(3.2.10)



s

2

The flow rule for & perfectly plastic medium with tempersture dependent
yield stress can be established by considering again the conditiom of
the coincidence of the direction of principal axes of plastic strein
rates with the principal stress axes during plastic flow, and the con-
dition of plastic incompressibility. These conditions suggest the flow

rule

o for FP£0 , F <0
si,j = { (302011)

A’afs; for F=20 1}-0
i) = ’

where A 1is a function of plastic strain, stress and temperature and
their rates. It is not possible to determine )\ from the yield funo-
tion itself because the latter is independent of plastic strain. If we

consider the yleld criterion of Von Mises,

F =¢f -H
(3.2.12)
= 3, - K(1)
then )\ may be obtained by multiplying (3.2.11) by Ty and suming.

In view of the definition (3.1.6) of Jys We find that

T 8

13 54
A 2—1(%(1:—)1 (3.2.13)

33 HNon-Isothermal Plastic Stress Strain Relations for Singular Yield

Functions

The yield function defined by the Von Mises yield criterion is a
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regular yield function representing a yield surface without corners. We
my also characterize yielding by a ut. of 1 Yyield functions r")'
('1.1’ ?, §), vhere 7 = 1,2,...n. These yield functicns define a
Yield surfuce in the stress space which may not have a unjique normal at
every point, and are referred to as singular yield functioms. We adopt
the convention that plastic flow begins whenever any one of the funce

()

tions ¥ becomes zero, and that the medium is elastic if all func~
tions r(7) are less than zero. The plastic strain rate is then taken
to be the sum of the constituents 513(47) (3.71, (3.8], (3.9], thus
n
s,, = L 8 (7) (3.3.1)
1‘1 7-1 1'1
For a strain hardening medium with a temperature dependent yield

stress, the plastic strein rates s " 3(7) are defined by

M ao, o, <0 or 0, <o

1)
7). () .
g:—(— vi,j + %—- T<O
1)
(3.3.2)
.13(7)% 0, £>0, 7 _ o , £ .o
) . 2 -
v + T>0
g W=
where lu(” and g(7) are the values of -“ and ¢ comsqonunc

to the function X7). e most comcnly used stngular yield functions
due to Tresca, and are defined by [5.10],. (3.11]



. ) X(D,¢)
K3 o A2 . H(T,¢) (3.3.3)
F(j) - f(5) - E(T,8)
where

f(l) i 1”1”’2' ) .11-1'2.

2 2

v, = v} T, =T

H2) _ +22 1 122 3} (3.3.)
6 T o Tl § S i Tl X

2 2

and v1 sy T 1 are the principal values of the deviatoric and total
stress tensors. The function H is identified with the yleld stress;

for a perfectly plastic medium H is & function of temperature T alone.
7)
The plastic strain rates sij( ! in 55.551) and (5_-}.8) are gbtain=

ed from (3.2.8) by replacing the functions £, F and H by the corres-
ponding functions £7), F7) ana H associated with the singular
yield surface.

We note that, for Tresca's yleld criterion not more than two of the
three singular yield functions may vanish [3.12] , the third one would
be equal to <H. In this case the stress point is at the corner of the
yield surface defined by (3.3.3) in the space of principal stresses. We
remark that Tresca's yileld criterion is frequently used when the direc~
tion and sense of the principal stresses are known from comsideration of
Qymetry.

From (3.2.11) follows that, for a perfectly plastic medium, the
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flow rule associated with the Tvesca's yield criterion is expressed by

af('?)
s, = 5 Z.(7) E:L- (3.3.5)
where
o e Mo o F7 a0 , <o
(r . ax?) -
<0
5 Vk + &-—— <

and (3.3.6)

oo 12 Moo , ¥ oo

ar(7) v + aF T = 0

ol
The quantities 1(7) are functions of stress, temperature, strain and
their rates. These coefficients may be determined in a manner similar
to that used in the last section, although for particular problems other
methods may be more suitable (cf. chapter 5).
3=k Thermodynamic Investigation of the ¥low Rule

The conditions imposed on flow rules by the principle of thermo-

dynamics were derived in the preceding chapter. Specifically, we found

that non-negative entropy production requires that
Y 31J> 0 (2.3.22)r

be valid. We intend to show in this section that the genersl non-iso-

thermal flow rule given by (3.2.8) sstisries (2.3.22), and, thersfore,
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the second law of thermodynamics, vhen used in conjunction withk either
the Von Mises or Tresca's yield criterion.
| We recall the flow rule (3.2.10) associated with yield criterion of

Von Mises, and, multiplying it by =~ and summing, obtain the result

i)

T13 V13 . .

TR T = 7= (gﬂ Vi * g%'l‘) (3.4.1)
T (vm, vm,ﬂ)

In order to verify (2.3.22), we first recall

(%k—l {rkl+ % T) >0 (3.1.12)R

and that OH/Q¢ was also assumed to be positive (cf. relation (3.1.7).).

. 1/2
Then, since (vm_ ‘ vm,) is clearly positive, the only quantity that
needs to be examined is 'l,'iJ vi,j'
Writing
.. = v, + 28, .1 (3.1.3)R
i) i 3 iJ kk
we f£ind that
T,,V,,=V,, V,. + i 5,.v,,. T
iy 1) 1) 1) 3 "1y 1) kk
Y RTE 0 (3.4.2)

vhere we used the fact that, be definition

Vig = O
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i.e., the first invariant of the deviatoric stress tensor vanishes iden-
tically. The result (3.4.2) thus completes the proof of (2.3.22) for
the case wvhen the yield criterion of Von Mises is adopted.

In order to verify (2.3.22) for the flow rule (3.2.8) used in con-
Junction with the Tresca's yleld criterion, we consider a stress point
at & corner of the yleld surface. The case vhen only one singular
function vanishes is then included as a special case. Let us assume
that in the yield corner

v.> v , V>V (3.4.3)

and that the singular yield functions are now represented by

) I-l-.rvﬂ -H=0
w2 _ l;-ZZ -Ha=0 (3.k.4)
3 . "'va;_v' -H<O
In addition, we let
oo, ¥ .0, <o (3.4.5)

Noting that
V. =V =T, =%
the assuwption (3.4.3) implies

T, =T~ 0, T -T>0 (3.4.6)
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The first two equations of (3.4.4) can be written as

#1) V1 " V2 1%

=H
(3.4.7)

Since the function H is the same for all three singular yleld

functions, this implies that

= V.

v, 3

(3.4.8)
1) _ L3 <, 1) (2 e

where £° anda F© are the values of the functions f(l), r(a) and
r(l), r(a) at the yleld corner, respectively.

Multiplying (3.3.1) by Ty and noting that

= T, B

T13 813 k °x
ve obtain 3
i} (7) b

Ty B Ty 751 8y (3.4.9)

Since, by (3.2.8),
&(7) ) (7)
(7 _ or, (E— v + EF— 1) (3.40)
k w o) a2 m T
SE( - o )
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the substitution of (3.4.10) into (3.4.9) with (3.%.5), (3.4.7) and
(3.4.8) yields

‘l’lsl + 1282 + 1385

(1) (2) (1) (2)
o o of of
= ["1 '(35'1_ + Sf;—) % (8?;__) * T3 (8?5_)]

c . C .
. afcla,c e (g: v+ E o G
3 (& &)

The flow rule associated with the Tresca's yleld criterion is com-
patible with the second law of themodymmiés if the right hand side of
(3.4.11) can be shown to be greater than zero. The quantities (JH/dt),
(3°/ar ar°/axm)l/2 and (IF°/ov v + aF°/or T) are all positive
definite during plastic flow. The only quantity that needs to be exam-
ined is the sum of the terms inside the square bracket. By (3.4.7) and
(3.4.8), we obtain

af(l) - af(z) . i af(l) - - .J; Bf(a) . 2’.
5:‘1 &l 2 ! 3;2 2’ 3 2
(3.4.12)

Hence, in view of (3.4.6), we have that



2(l) (2 3e1) 3¢(2)
AL b wtR L AR A e

=[%'- (‘r:L - 1'2) + %(1’1 - 1'3)_7> 0

-Thus it has been shown that the flow rule used on conjunction with
Tresca's yield criterion is also compatible with the Second Law of Ther-

modynamics.
3-5 A Special Case of the General Flow Rule

We now proceed to exhibit a further Justification of the form
(3.2.8) of the flow rule. Specifically, in this section it will be
shown that the Von Mises flow rule formulated for perfectly plastic
media is a special case of the general flow rule.

By (3.1.10), the general flow rule can be written as

of
aH.
8, = 5 iy ( t) (3.5.1)
U E w ax P *
AR e

(3.5.2)

where K 1is the constant yield stress in simple shear, the flow rule

now becomes

V. .

m mn

(3.5.3)




o ema

»

By definition (3.1.2), & 18 equal to (s, sn)l/ 2, After re-arrang-

ing, (3.5.3) now appears as

v )1/2

mn  mn
2 %1

v
1)
( 81 %1

From (3.5.2) follows that, during plastic flow, (v ' vm)l/ 2

equal to XK,/ 2, therefore

Van Ymn )1/2 K X
( = = AR
ﬂkl Bkl ( ]2_.' Bkl skl)l 2
where
1l
I = 5 skl skl

Combining (3.5.5) and (3.5.4), we arrive at

K
V. = 8

13 \/—f i

(3.5.4)

is

(3.5.5)

(3.5.6)

. The expression given by (3.5.6) is the exact form of the Mises

flow rule for perfectly plastic media [3.13]. This implies that the

general flow rule as represented by (3.2.8), under certain assumption

can be reduced to some lmown plastic stress stra.in relation, e.g. the

Mises flow rule.
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PART II. APPLICATION

Chapter 4. The Elastic-Plastic Response of a Half Space to a Uniformly
Applied Heat Pulse at its Boundary

k=1 Introduction

Temperature variations of large smplitude and short duration are
encomntered in various fields of engineering applications. For exam-
ple, the elements of a nuclear reactor may be subjected to sudden heat-
ing and cooling due to changes in the rate of fission. Similarly, 4
spacecraft is subjected to heat pulses associated with the ignition of
rockets, and with re-entry into the atmosphere of the earth [4.1],
(4.2], [4.3]. It is naturally important to be able to predict the tran-
sient and residual stresses and deformations caused by such heat pulses
and to investigate the physical damage incurred.

Transient thermal stress and deformation in the elastic-plastic
range have been recently studied by a number of investigators. In par-
ticular, various problems for plates have been treated by Weiner [4.4],
Yuksel [4.5], Landau and associates [4.6], and most recently by Mendel-
son and Spero [4.7]. Except for the work of Mendelson, the incremental
theory has been used in every case, and the medium considered was assum-
ed to be elastic, perfectly plastic obeying the Von Mises yield condi-
tion and possessing a constant yleld stress. landau [4.8], however, in
one case did take the dependence of the yield stress on temperature in-
to consideration. Mendelson employs the deformation theory without re-
sorting to any flow rule of yield comdition, but takes strain hardening
and dependence of the physical properties of the medium wpon tqpczt-
ture into account. Similar investigations pertaining to elastic, per-
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fectly plastic cylinders were considered by Weiner and Ruddleston [4.9],
Iandau and Zwicky [4.10]. In the latter investigation the yield condi-
tion of Von Mises is adopted, and the yleld stress is assumed to depend
on the temperature. A similar problem pertaining to elastic, strain
hardening spheres with a constant yield stress was treated by Huang
(4.11]; because of the complexity of the numerical calculations in the
work of Huang and Landau, high speed computers were used.

In order to illustrate the use of the concepts developedi in the
first part of this study, we shall present a detailed analysis of the
transient and residusl stresses and deformations induced in a half
space by a heat pulse uniformly distributed over its boundary. The
half  pace is assumed to be constrained against lateral motion, and the
medium is assumed to be elastic, homogeneous and isotropic, and linear-
ly strain hardening in the plastic range. Moreover, the yield stress
is permitted to vary linearly with temperature, whereas other material
properties are assumed constant.

We shall give a complete stydy of the growth and decay of various
regions of loading and unloading. The most serious limitation of the
solution to this problem is that it lacks a characteristic dimension of
length. Therefore, we shall briefly investigate a plate of finite
thickness in Chapter 6.

4-2 The Temperature Problem

As a consequence of the mathematical complexity inherent in the
thermal stress problems, it is necessary to select temperature solu-
tions that are as simple as possible. In particular, the mathematical



problems are greatly simplified if the temperature solution is in a
closed form. One class of such closed form solutions corresponds to
tempersture fields induced by instantaneous heat sources (or sinks),
doublets, and the like, Since these solutions are singular at the

source point, the latter must be located outside the material body.

oy

Fig. U1 Heat Sources and the Infinite Slab

In the present analysis, a row of heat sources is placed at an
arbitrary distance a from the boundary of the body (Fig. 4-1). Let
x be the coordinate measured fram the source plane, and t the time.
The increase of temperature T over same reference temperature T o is

then given by [4.12]

-xa/luct
T =« C ?75 (4.2.1)

vhere C is a constant, and x 1is the diffusivity of the material
(assumed to be constant). It may be reedily verified that the tempera-

ture field (4.2.1) satisifes the one-dimersional heat conduction equa~



tion

ar b.2.
z (b.2.2)

Rl
[ |
x|+

and is finite everywhere in the material (i.e. x> a).
The maximum temperature Tm occurs at the boundary x = a, and,
as may be found from (4.2.1), at the instant t, &iven by

2
tm = 5 (4.2.3)

Similarly it is found that the maximum temperature at x 1s reached at

the instant tmx gliven by

(h.2.4)

ot
"
K]

The arbitrary constant C in (4.2.1) may now be eliminated in

terms of a given maximum temperature Tm, thus obtaining

1 .2
5 = x“ /it
T = T a e 2 (4.2.5)

" xR

Substituting (4.2.4) into (%4.2.5), the maximum temperature Ty

attained at x Dbecomes

3
T = T 3 (4.2.6)
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The variation of the temperature T with time t for various wvalues
of position x 1is shom in Fig. 4-2, whereas Fig. 4-3 illustrates the
variation of T with x for various values of t. The results have

been made dimensionless by using the variables

L7, x/a, /8,

for temperature, position and time respectively.

The solution (4.2.1) corresponds to a temperature field induced
by suddenly releasing a finite amount of heat at x = 0. It may be
seen fram Fig. 4-2 that this solution is a reasonable approximation of
& heat shock, i.e., of a sudden rise in the boundary temperature follow-
ed by a gradual decay. It has been assumed, of course, that the heat
conduction problem is not influenced by the mechanical deformation of
the material.
b3 The Elastic Regime

During the initial stages of the heat shock, the response of the

matérial will be elastic. Let 7 € u, denote stresses,

iy’ iy? i
strains and displacements respectively. The elastic thermal stress

problem is then characterized by the stress equation of equilibrium

TiJ}J = 0 (h.}.l)

The stress strain relgtiohs

1 3 eid - gl art 513 = TiJ - ('l+1ll) T b'i,j (4.3.2)



and the strain displacement relstions
€. s=(u, ,+u,,) (4.3.3)
iy 21,3 Jsi

where El, a, ‘)/l are Young's modulus, coefficient of thermal expan-
sion and Poisson's ratio, respectively, and use has. been made of the
conventional index notation.

In addition to quiescent initial conditions, it is assumed that
at the boundary

T_=0 for x = & (%.3.4)

In view of the sﬁnplicity of the problem, the following abbreviated

notation is introduced,

U =0 (x,t) ’ py = U =0 (4.3.5)
€= € (x,t) , €y = €3z " 0 (4.3.6)
L (x,t), T = O (4.3.7)

The relations (4.3.5) express the conditiom that the half-space is con-
strained against lateral motion. It follows, then, that all shearing
Iltreues and shearing .s'trsins vanish. Finally, the second of (4.3.7)
follows from (4.3.1) and (4.3.4).

Teking (4.3.5), (4,3.6), (4.3.7) into deccount, the relation
(4.3.2) finally appears as



E ¢ -EaT = -2V T ,

-eE T = 1(1-1/1) ,

whence follows

1+ 1/1
€= € - afT » (h.3.8)
ag
T = TW = Tzz = - 1 - 1/1 T ’ (""'3'9)

Here T is given by (4.2.5), and we note that

T o= 2pg€ (%.3.10)
where
B
B eo——— 4.3.11
T ey thea)

is the elastic modulus of shear. Introducing the maximum shearing

stress q

aEk
Q@ =F = —=— T (4.3.12)

2(1 - 94
and the maximm shearing strain p

1+

a T , (4.3.13)
2(1-v)

o
[ |
ST



o3
the relation (4.3.10) may now be written as
qQ = 2 uEp‘ (k.3.14)

Finally, integrating (4.3.8), the displacement U is obtained as

1+ 1/2

= 1 z X -1 4.3,
U — aat (e3) “(afﬁ‘) ] (%.3.15)
where

¥(s) = ?%T/a f e-u du

o

is the error function, and the arbitrary function of time has been

chosen so that the regularity condition
U=0 for X — O (4.3.16)

is satisfied.

Ve also make the relevant observation that the solution given by
(4.3.8), (4.3.9), (4.3.15) holds even if the elastic region begins at
same elastic-plastic interface characterized by x = Py

b~k The Elastic-Plastic Regime
4-41 The Onset of Yielding

It is found from the elastic solution presented in the preceding
section that, as the temperature increases, the shearing stress also in-

creases. Let the initial yleld stress in shear be denoted by Y and
let |



yI = Yy nd FI' (hn l"o 1)

vhere B 1is assumed to be a known constant, and Y, is the value of
yg for T=0 (i.e. at the reference temperature To). The instant
tl at which ylelding begins at the boundary x = a can be readily de-
termined by letting

q (a,t) = Y1 (ayf') ) (=)

if we adopt the yield condition of Tresca. Fram (4.3.12), (4.4.1) and

(k.2.5) we then obtain

2

1/2 |
1t X, T '21°5[(2"/5)/ Voo Ty [B+ E(Ei_-':@']j

1l

log t

(4.4.2)

The equation (4.4.2) can also be used to find the instant v, ot

which ylelding occurs at the plane characterized by x, if a and tl

are replaced there by x and tlx’ respectively.
From (4.3.12), (4.4.1) and (a) follows that the boundary tempera-

ture Tl at the instant tl is given By

Yo

- L.,
k! B+ E a/2(1 - 1/1) ( ?)
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Fig. 4-4 Regions of Loading During the Elastic-Plastic Regime

For t> tl an elastic plastic interface whose location is denot-
ed by pl, progresses into the material. In the wake of this inter-
face, the material uvadergoes plastic loading until t becomes equal to
tm; then, corresponding to the decrease of the boundary temperature,
an elastic unloading front emsnates from the boundary.

The present section concerns the time interval t. < t < tn’ hence,
in addition to the solution of the elastic region, it is necessary to

derive a solution for the plastic regionm.
4-42 The Elastic Region
The solution of the elastic region is the same as that given in

section 4-3 except that the elastic region now lies at x> Py s Vhere

Y is yet to be determined.



In order to determine the position of the elastic-plastic inter-
face p;, Ve use (4.2.5), (4.4.1), (4.3.12) and (4.3.9). In particu-
lar, from

4 (pys £) = ¥p (pyst) (4.4.4)
follows

1
'2- l_vl T (pl)t) = yO

or

1/2 (04
pl2=2Kt{l-1ogt-2log [yo (&)/ﬂma(%:v—l’ +;B)]}

(4.4.5)
It is interesting to note that, as a consequence of (4.4.4), the tem~
perature at the interface remains constant and equal to 'rl (the bound-

ary temperature corresponding to incipient yielding), thus

Yo

= = = ,'l-oll-o6
Tloy t) =Ty, =T 575 o206 ( )

where Tlx

the plane characterized by x.

is the temperature corresponding to incipient yielding at

It follows then, that the progress of the interface may be studied

by drewing on Fig. 4-2 & horizontel line at the height of T./t , and

investigating its intercepts with temperature curves.
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Since '1‘1 is the maximum temperature for yielding, the maximm

value Rl of p, can be determined easily. MNeamely, since the maximm

1
temperature me reached at x is given by

a
Tex = T In (4.2.6)R
it follows that
a
l]"l =-§I Tm
or by (4.4.6)
Tm a
Rl = a a [ B + E(-l—_?l)-——] (%.4.7)

Therefore, it is Jmown that the region a = x <R, will undergo some

1
plastic deformation. The exact determination of the residual state,
however, can only be found fram a detailed analysis.

4-43 The Plastic Reglon of Loading

As the boundary temperature rises beyond Tl, the plastic region
extends inward from the boundary. In order to derive the approptriate
golution for the plastic region, the plastic stress strain relations
must be established first; this step must be preceded by the formula-
tion of yield functions, however.

4-43-1 The Yield Functions

In the elastic solution the maximum shearing stress q and maxi-

mm shearing strain p 18 related by
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Q= 2u,0P (4.3.14)R

Bince the medium is asaumed to be linearly strain hardening, the
relation betweenl the maximm shearing stress and maximum shearing strain

is of the form illustrated graphically in Fig. 4-5.

1 2

Fig. 4-5 Relation Between Maximm Shearing Stress and Strain

in a Linearly Strain Hardening Medium

We write

= yI + Ay ] (3)

vwhere Yo is the current yield stress, ¥r is the initial yield
stress which is equal to Yo - BT, and Ay 1is the increase in yield

stress due to strain hardening. Similarly, we let
&p = p" + AP P (v)

vhere Ap 1is the increase in total strain corresponding to the in-

crease in yield stress, p" 1is the plastic component of the maximum



k9

shearing strain, and Ap' 1s the corresponding increase in the elastic
component of the maximum shearing strain.

Referring to Fig. L4-5, we note that

&y = 2 HEAP' ’ (c)
and
&y = 24 (p" + op') (a)
We eliminate Ap' from (d) by cambining (c) and (d),
1 "
&y = 75 24P ’ (e)
where
[
g = £
Hg
From (a) and (e), the current yield stress is then obtained in the
form
Y. =y - B +7= 2pu D" (¢)
c o l-s )

Since, by (4.3.13), the maximum elastic shearing strain p' is de-

fined as £ m‘/2, we have that
op' = Aén/«? (g)

Similarly, we write

' = rxx/a (h)



vhere Tox is the plastic strain component in the x direction. It
remains to express »" in terms of the strain hardening parameter ¢
defined by (3.1.2).

Taking the plastic incampressibility, and the symmetry about the
x eaxis into account, we readily find

1
®vy " %2z = T 2 P
Moreover,

- (2) = (1)

Making use of (h) and (i), we rewrite (f) as

= L.
Yo = 7, B o+ 75 24, (3)
If the medium has not undergone previous plastic deformation, the para-
meter & is equal to zero, (J) reduces to (4.4.1).

b-43-2 The Stress and Strain Rates Corresponding to-Positive Tempera-

ture Rate
The yield criterion of Tresca will be used here not only to pro-
vide a means for locating the elastic-plastic interface, but also to

serve &8 yleld function from wvhich plastic stress streain relations are

50
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derived. We observe from the elastic sclution that the stresses T Yy
and 'u are negative corresponding to rising temperature, and posi-
tive for falling temperature. The corresponding maximum shearing
stresses are, therefore, given by -*rnja, -'rzz/a in the first case,
and by 7 y:’/2, -rzz/e in the second case.

We now cambine (3.3.3), (3.3.4) with (J), and obtain & non-iso-

thermal yield condition in the form

MDD g2 T ol oA ) (k)

2 1l-s o JB
2 e =V .
£ 3 x, '(Yo‘m"'il:a“p ..55._) (4.4.9)
- where
(2) Yx " V2 o fa
P - > - 5 s (4.4.10)
H = = (y - BT + —L 2 g )
Yc . 0o l-8 up /T
In particular, since
T = T = T
Y 22
ve have that

1) @ enire, VL3 g (b.%,11)
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Fig. k-6 Yield Surface and the Path of Loading for the Present Problem

From (4.4.11) follows that the state of stress in the plastic i-eg-
ion corresponds to the yleld corner which is represented by the point A
in Fig. l&-é. The plastic stress strain relations may thus be obtained
from (3.3.1), (3.3.2), and (3.2.8):

(k.h.13)

'13(7) - af(7)/a‘1i R (ar/3v, ;kl + AF/or 'i.‘)
anfor (7 o, 27 )

vhere £'7) are given by (4.4.8), (b.4.9) end (k.5.10). The flov rule

(4.4.13) is complemented by Hooke's Law, (4.3.2), and the condition that
the total strains in the y and 2z directions vanishes. These condi-

tions furnish five equations for the five unknowms & = Yxx’ E o



s and 'ryy in the plastic region. 8pecifically, we find#*

1 .

- 1 - T__+ BH) )
= 1 1 17{ ( ¢ W (‘

= up(g)
1 1 .

- - - 1 (-1 +38r) (b)

8oy 2z 2 T N i 2 vy
= up(g)

énsavl/kl ;tt+a'i‘ (c)
éw =(1 - Y ;w+ai' (a)
’w"éy.v (e)

22
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(b4.5.14)

Since the stress T}'.Y =7 and the total strain ¢ o 8re of pri-

mary importance, we solve for them from (4.4.1k), and obtain

(4.k.15)

(4.%.16)

¥ Mhe derivation of (a) and (b) in (4.4.14) is given in Appendix B.
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vhere 1/2
" 2 BE, (1-s) -2E au (4/3)
1/2 ’
E (1-8) +.2 (1-111) My (4/3) 4
(4.%.17)
10) O) v,
Ne [a+ B \l-:P (3 7 - (l-s%réi) . Ell

We emphasize that equations (4.4.15) and (4.4.16) are applicable
only to the plastic regions where plastic flow is induced by rising tem-
perature. Moreover, with reference to (4.4.15) and (4.4.17), we note
that a positive temperature rate may give rise to a positive or nega-
tive stress rate depending on whether the effect of temperature upon
yield stress dominates or the effect of strain hardening upon yield
stress dominates. In thefirst case, the stress Tyy 1o the plastic
region will always be less than the value it assumed at initial yield-
ing.

The stress and strain distribution in the plastic region may be
obtained by integration of (L.4.15) and (4.4.16).

helt3-3 The Stress and Strain Rates Corresponding to Negative Tempera-

ture Rate
If the boundary of the half space is cooled, the stress in the y
and 2z directions becomes tensile and the maximum shearing stress be-
comes T n/a = 7,,/2 1in the place of -7 w/a = - 7,/2 found for the
case of heating. The yield functions corresponding to (4.4.8) and

(4.4.9) now assume the forms
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W E DL 65 L. LX . (y -BT+ &g Ay (Bag)

' ' v, =V
Fo) L@ g o m, Lo, 7_-2-_—) (4.k.19)

where
vV =V T
A1) o x_x | @
2 2
g2 |2 x| lm
2 2
1 -
H ycsyo B].‘+1_B aup
Again, since
T = T
Yy 27
we have that

Pt R N T L A € L

Proceeding as before, it is found that the stress rate and strain

rate are related to the temperature rate by

Tyy = M'T (k-h-m)

; = N'é (hohoal)
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vhere
1/2
2BE(1s) - 2E @ b (4/3)
M = L 1 T
E, (1-8) + 2w (1-9)) (4/3)
(4.4.22)
1/2 1/2
ng[a_B(l-B) (3) ]_ M'[ s:l_-;!szz . .2—;./1-_.]
“p p 1

Relations (4.4.20), (4.4.21), (4.%.22) may only be used to describe
the stress and strain rates in any plastic regions where plastic flow is
induced by falling temperature.

If the yield stress 1s independent of temperature, the response of
the medium should be the same regardless of whether the external excita-
tion is a heating or a cooling pulse. This, in fact, is the case if
the quantity B in (4.4.15) and (4.%.20) is set equal to zero, in which
case these equations become identical; the same is true for (4.4.16) and
(4.4.21). Furthermore, if in addition to setting B equal to zero in
(4.%.15), (4.4.20), (4.4.16) and (4.4.21), the plastic shear modulus
pp is set equal to the elastic shear modulus g these equations re-
duce to their elastic counterparts represented by (4.3.8) and (4.3.9).
4-43-4 The Criteria of Loading and Unloading

As was noted previously, the medium will undergo same plastic de-
formation in the region a <x SR]_ if temperature exceeds the value
T, &lven by (4.4.6). For a point in this region, two instants are of
prime importance: the instant at which plastic flow begins, and the in-
stant at which plastic flow ceases. The first instant can be obtained



5T

from (4.4.2), whereas the second instant remains to be determined.

The loading and unloeding criteria discussed in Chapter 3 may help
to shed same light on the duration of plastic flow. From the relations
(3.3.2), (4.4.8), (4.%.9), (4.4.11), (4.4.12) follows that, for the

present case, these criteria may be expressed byi

1 . ‘e
f—— > :
5 'ryy+ Br =0 for loading
(%.4.23)
1 - .
-5 Tyt Br <0 for unlbeding
Substituting (4.4.15) into (4.4.23), the cirteria become
(B -,%M) T>0 for loading
(4.4.24)
(B - !2'-14) T <0 for unloading

where M is given by the first of (4.4.17). The quantity inside the
parentheses of (4.4.24) is a constant, and is found to be positive
definite upon closer examination. Therefore, the criteria for loading

and unloaeding may be expressed as

T>0 for loeding

. (4.4.25)
T<0 for unloading

i The derivation is given in Appendix B.
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It is thus seen from (4.4.25) that, at any location in the region
represented by a< X sRl, plastic flow begins at the inatant tlx
a.t.vhich the temperature T is at '1‘1, and terminates at the instant
tmx for which the temperature is at its maximum me

4=-43-5 Bolution for the Plastic Region

The stress Tyy and the total strain exx in the plastic region
may be obtained by integrating (4.4.15) and (4.4.16) between the limits
tlx and t where t:lx is the instant of incipient yielding at x.
By (4.3.8), (4.3.12) and (4.4.6), we obtain after appropriate integra-

‘tions

y
T (%t) = M B(x,t) - [2y, + ° (M - 2B)] (4.4.26)
o B+ §0/2(1-7)
1+, Yo

1
=y, @ FrEemrozy ! (W20

€ o (%:t) = N (x,t) - [(N -

vhere M and N are given by (4.4.17).
The displacement Uxx’ denoted by U, 1s obtained in the plastic
region by integrating (4.4.27) with respect to x between the limits

p, and x

1

1+ ’111

Y
. U(x)t) = (N - 1_7/1) B+ El a}ézl—.zjl'y (pl

1/2
-Nat (5e) I[v (==

2/- f—

+ g (pst) (4.4.28)
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vhere ¥(s) is the error function defined by (4.3.15). The function
g(Dl,t) may be determined by considering the condition of continuity

of displacements at the elastic plastic interface x = °1’ nanmely

U

elastic = U st x= p (b.4.29)

plastic

From (4.4.28), (4.4.29) and (4.3.15) then follows the result

L+Y 1/2
S(pl:t) = i—_vi'- aQ Tm ( ’—é-e) [*(.2__{_1_) -1] (ll-.ll».BO)

The complete solution for the time interval tl st=< tm is given
by (4.3.8), (4.3.9), (4.3.15) for the elastic region and by (4.3.26),
.(la-‘.h.27), (4.4.28), (4.4.29) for the plastic region.
L4-5 fThe Elastic-Plastic-Elastic Regime

4-51 The Onset of Elsstic Unloading

This section is concerned with the response of the material at
time +t> tm where tm is the instant at which the temperature at the
boundary is at its maximm. We recall here the criteria (4.4.25) for
loading and unloading, and observe that any point in the region
&8 <X =< Rl
unloading impends as soon as the temperature at any location in the re-

unloading is imminent when T becomes zero. In other words

gion agx=< Rl has attained its peak wvalue.

From inspection of (4.2.3) and (4.2.4) it 1s found that the tem-
Perature first attains its maximum at the boundary at the instant ¢ n
glven by
(4.2.3)R

ot
"
R]"



At this very instant the temperature at the boundary begins to decrease,
and an elastic unloading front starts to progress into the medium. The
unloading front eventually overtakes the front of plastic loading at

the instant

% R, (4.2.4)R.
x

and at the position x = R, of the half space.

1
| Y, i
b 2 x=R |
| 7/ 1 l
| fkgﬁon of | Region of
stic Plastic
} gﬂnloadins Loading Elastic | Region
l———'—-ﬂ—-/A x=p2 ———— I
I % |
o] ! ,l ! i X

| % |
7 G |

? Second Elastic| First Ela.sticl

/A Plastic Plastic

2 Interface Interface I

2 |

A

7 |

Fig. 4=7 Regions of Loading and Unloading in
the Elastic-Plastic-Elastic Regime.

4-52 The Elastic Region

For time t> tm’ the elastic region still lies beyond the elastic
plastic interface the position of which is denoted by Py, and may be
found from (4.4.5). The solution for this region is identical to that

derived in section k-3.
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4=53 The Plastic Region of Loading
The plastic region now lies between the two interfaces Y and

(+] where p, denotes the position of the elastic unloading front.

2’ 2
In this region the equations (4.4.26), (4.4.27) and (4.4.28), derived
in the last section, still represent a valid solution.

Let us recall that the unloading front is located at a point where
the temperature is at its maximum. For a given position x, the in-
stant tmx at which the temperature attains its maximm is found from

(4.2.4) to be

t. = x/x (4.2.4)R

Therefore, the position x = p, of the unloading front is given by

2
2
92 = 2K t K} (hosol)
t > >
le/ t = tm ’
where
t 2 2
mR, = R,"/2« ’ t, = &/

The position x = p. of the plastic loading front can be determined as

1
before from (k.4.5).

5-54 The Elastic Region of Unloeding

For any instant t between tmR and tm, three regions exist
1 i ' '

simultaneously in the half-space, namely, the elastic region of unload-
ing, the plastic region of loading, and the elastic region. However,



Por € > tmi only the elastic region of unloading and the elastic
region remain. Replacing x by R, in (4.2.4), the instant tR

. 1
may be obtained by substituting the expression for R, glven by (4.4.7)

in the resulting equation, thus,

2

1 Tm a
tle = Q—K—{a-y—o-[ﬁ-!- m]} (1&.5.2)

455 The Transient Solution in the Elastic Region of Unloeding
The stress and strain rates in the elastic region of unloading may

be obtained from (4.3.8) and (4.3.9) as

* (x,t) = - T T (x,t) (4.5.3)
. 1. .
€ (x,4) = ;ﬁi' al (x,t) (4.5.4)

We shall take as the limits of integration t and tmx’ where
t 1s greater than t . We also recall that, by (4.2.6), the maximum
temperature T(x, tmx) is equal to Tma./x. Then using for <(x, tmx)’
e(x, tmx) the results (4.4.26), (4.4.27), integration of (4.5.3),

(4.5.4) yields

GEl

a
T(x,t) = - %T(x,t)+{(m5'.+x) T .;.

- [2y°-+ ﬁ?l%ﬂﬁ/g(n -23)]} ’ (%.5.5)

>
for t tmx
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1+ 1+2/l

1 ) ) (¢ & ~o )]
i:lz a T(x,t) + [(N'Tﬁ'/; ¢) (T, ;'m

e(x,t) =
for t>tmx . (%.5.6)

In order to obtain the displacement U, we integrate (4.5.6) between

the limits o 1 and x and obtain

/

14y 1/2 Py
o) 1 e (50 LG T )

l+1/l

J
e e sy e
+ & (s t) (+.5.7)

where p i is defined as follows:

{ pe for tmR> t > tn
Di = 1
B for t> t

mRy

Formally the function g(pi, t) in (4.5.7) is determined from the con-

ditions of continuity of displacements across the interface x = pi,

Uelastic unloading = Uplastic ’

(%.5.8)

at X =p, for tle> 1:>1:m ’
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and
Uelastic unloading = Celastic
(%.5.9)
at x = R, for t 2> tmR

Thus, by (4.5.7), (4.5.8), (4.5.9), (4.%.28), (4.4.30) and (4.3.15),

1+, y
g(py,t) = (N - 1-3% a) B—:;w (0, - 9,)
1/2 1
- NaTm(%e) [V(zﬁ)- J_
1+V 1/2
+ l—_wi-'- aQ Tn ( -g-e) / [*(——‘/—:) - 1] (%.5.10)
and
1+, 1/2 R
1 1
6(B,t) = 1 e, (Fe) [v(——aﬁ) - 1] (4.5.12)

4-56 Steady State Solution in the Elastic Region of Unloading

Expressions for residual stress T_, strain €_ and permanent
R R

deformation U, may now be derived from (%.5.5), (4.5.6), (4.5.7) and

(4.5.11) by letting the time t in these equations tend to infinity.
We readily find that

AOR ‘“*%1’ T,

X1®

Y
- [2 ¥, + m (M - 2B)] , (%.5.12)
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eR(x) = (N-i-_-i)i-a) [Tm;' - FTE—}‘%W] (4.5.13)

Y
L) - - (emE - rriaza'(wy""“l”
Eg! 1 B “H

1+, 1/2
1 X
1—_1/'1— a o Tm ( 3 e) (1#.5.1!&)

.

where, by (4.4.7), the quantity R, is given by
B (g o (4.4.7)
= a — B + . 07 R
Rl Yo 211-2/_1)

We observe from (4.5.12), (4.5.13) and (4.5.14) that the residual
stress, strain and deformation decrease from their maximum values at
the boundary to zero at x = R,. The last term in (4%.5.14) represents
the uniform expansion of the material, and is due to the assumed van-
ishing of displacement at infinity¥*.

With the transient solution given by (4.5.5), (4.5.6), (4.5.7),
and the steady state solution given by (4.5.12), (4.5.13), (4.5.14),
solution for the elastic region of unloading is campletely determined.
However, it should be noted here that the relations just mentioned above
are applicable to any position in the region of unloading only if the
material there is in the elastic state.

4-6 Extension of the Solution to Higher Boundary Temperature

In the preceding sections of this chapter, it was tacitly assumed

that the maximum boundary temperature 'rm is of such a magnitude that

#cf. The equations (4.3.15) and (4.3.16).



no yielding occurs in the region of unloading. However, an inspection
of the equation (4.5.12) for residual stresses shows that the residual
stresses increase with increasing values of the maximum boundary tem-

perature Tn‘l. It is, therefore, possible that for sufficiently large

Tm’ the process of elastic unloading may be followed by plastic flow.

In what follows this possibility will be fully investigated.

461 Yielding in the Region of Elastic Unloading

As was noted in section 4-li, unloading at the point x begins at
the instant tmx when the temperature there has reached its maximum
value. Let us now define tpx to be the instant at which plastic flow
occurs during unloading at x. If we account for the temperature de-
pendence of yield stress, then, as may be seen fram Fig. 4-8, yielding

2z

in the opposite sense will impend, if the stress 'ry_y or 7T has

changed by the amount
2/1yy (x,tm)/ + QB[T(x,tmx) - T(x,tpx)]

Equivalently, at the instant of incipient ylelding in opposite sense,
the maximm shearing stress q(x,t) has changed by the amount

T (x,t

)
a(x,t) = 2/ B/ + B [Nyt ) - xot )]
pX
during the time interval from the start of unloading at tmx until
the instant tpx’ The mathematical expression for the criterion of

yielding in the region of elastic unloading is then as follows
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'ryy(x,tpx) - rw(x,tmx) =
2/'ryy(x,tmx)/ + 2B ['T(x,tmx) - 'r(x,tpx)] (4.6.1)
If equations (4.2.6), (4.4.26) and (4.5.5) are substituted into

(4.6.1), we obtain

Ela Ela a
(2B - I:v-l-) T(x,tpx) = (2B - i-:ﬁl - M) Tm b

y
+2l2y + z= E10705(l-171) (M - 2B)) (4.6.2)

It is of interest to determine the maximum boundary temperature
TM for which the elastic unloading will not be followed by ylelding.

Setting T(x,tpx) in (4.6.2) equal to zero, we find the result

1 Yo
™ = W+ &, /2(1-) - B] (2y, + 5T E /AT (M - 2B)]
(4.6.3)

If the maximum boundary temperature Tm is greater than TM’ plastic
flow will occur again during unloeding. Let tpa. denote the instant
of incipient plastic flow at the boundary x = a. Then both tpa. and

tpx' mey be determined froam (4.2.5) and (4.6.2):



2
/4t
ra
= 1 (2B - ;E:-; - a‘) Tm
2K tpa (2B - Ela/l-‘lll) T,a/ € 1
+ 2 (2 v, + Yo (M - 28)] (4.6.2a)
B+ El a721 1-715
2
-x" /K tpx a,
e P @ - 33 - 207, 2
T (2B - B, 0/1-) T a/Te 1
Y
+ 2 [2 Yo * B—rm (M - 2B)] (4.6.2p)
T X=8,
x=R1
P
tpa tle t
(=) (v)

Fig. 4=9 Graphical Determination of tpa in T-t Plots
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Since a closed form solution for tpo. does not exist, we may deter-
mine ¢t . graphically by drawing & horizontal line of height W, and
intercepting the temperature curve for the boundary x = a as shown in

Fig. 4-9. Here, by (4.6.2),

EQ oF
= T(a,t ) = (2B - ﬁl -2) T /(2B - 1-:'1;1)

+ 22y + ——W% (M - 2B)1/(2B e} )
o B+ Ela -] ) 1=y

For t> tpa.’ a new plastic interface, specified by x = 93,

propagates from the boundary into the interior of the half-space. The

position p, can be found from (4.6.2b) if we there replace x by Pz

3

and tpx by t. Denoting the steady state value of 93 by Rl.l and

setting T(x,tpa) equal to zero in (4.6.2), we obtain after rearranging

a T B + By 0/2(1-1))
By = ('1"1/ 7 - E T (4.6.4)

We recall that the steady state position Rl of the plastically

deformed region is glven by

a Tm El (o ,
Rl, = —y—;—- [B + E(l_-i/?).] (’-I-.h.?)R

From an inspection of (4.4.7) and (4.6.4), we conclude that the
plastic region formed during unloading never extends to the boundary

Rl of the total plastically deformed region.
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The total number of regions that may possibly exist in the half-
space as 8 result of raising the maximum boundary temperature above .
the critical temperature T, may be inferred from Fig. 4-9. The case

when tpa is greater than tmR is illustrated in Fig. 4-Ga. As may
1

be readily seen, in the interval between ¢t R and tpe. only two re=-
1

glons exist in the half-space; the elastic region of unloading and the
elastic region. For t> tpa,’ there exist three regions; the region
of plastic loading in tension, the elastic region of unloading, and
the elastic region. In Fig. 4-9b we have illustrated the case when

t R is greater than tpa.’ In the interval between the instants
1
tpa and t R, ’ four regions exist simultaneously in the half-space;
1

the region of plastic loading in tension, the region of elastic un-
loading, the region of plastic loeding in compression, and the elastic

region. However, for t >t R only three regions remain, namely,
1

the region of plastic loading in tension, the region of elastic unload-

ing, and the elastic region.
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L-62 The Transient Solution in the Region of Plastic Loading in

Tension

We note that, at the instant tpx of incipient yielding in the

region of elastic unloading, the sign of the maximum shearing stress is

opposite to what it was when yielding first occurred at that point, and

at the instant ¢._.

1x

In the present case, the stresses in the y and

z directions will be tensile rather than compressive; ylelding is caus~

ed by the continuous decrease of temperature from its maximum value me-
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In order to find the stress and strain in this region, the equations
(4.4.20) and (4.4.21) should be used in the place of (4.4.15) and
(4.%.16). - Recalling

;y - M s (4.4.20)R
éy -nr (4.4.21)R
where
1/2
- 2B E, (1-s) - . (4/3)
M = 1/5

E) (1-8) + 2 ) (&/3)7° (1))

(k.4.22)R
2 Ly 1/2
' (1-8) (3) 1 ' =B (1'5) (3)
N = [- 2y " E 1M+ [ o + al

the stress and strain in this region are determined by integrating
(4.4%.20) and (L4.4.21) between the limits t and tpx. Thus, by

(4.6.2), (4.5.5) and (4.5.6), it follows that

' M' + OB /1-v B,
(%, t) = M'T(x,t) + [(J__l,l + M) - W (2B - 7, " )]
M' + OB 1Y]
(T, i') - [Q—T"anl 7, +l] [2y
yo
+ (M - 28B)] (4.6.5)

B+ GEl -1/1



Th

1+ N' - (40, AU
€(x,t) = N'I(x,t) + [(N - -1;,-,% @) - ;;':7%1/1 i

oE, N' - (0, /2-Y,) @
'(2B-ﬂjl-2u)] T %-{23_%7%311

2y,

ey s Ty M- )

N - (1+yl/1-vl) a
B+ o, /B(1-1;) Yo }

+

(k.6.6)

The displacement U is obtained by integrating (4.6.6) between the

limits x and A

1 T 1/2 X 93
U(x,t) =a N'T ( 5e) Me/ﬁ) - “2/:?5 )]
* N' = (149 1-11)0: aE

2B = == =~ 2M)

*[a-ajﬁwl — ( 17,

A N' - (1+7/l/1-7/1) a

x
+(N~l_vl a)]Tmaln Fg-[EB‘aElT'VI

2y
ey + 53 @1;5(1'%) (M - 2B)]

N - (1+yl/1-7/l) a
* iTGE?Qr(l-pl) yo] (x - pj) + 8(95)t) (%.67)

Here g(pa,t) is a function of time, and is determined by the con-

dition of continuity of displacement across the interface:
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Uplastic loading ® Velastic loading 3% X = Pz
in tension

(4.6.8)

Thus, by (4.5.7), (4.5.10), (4.6.7) and (%.6.8),

\

Y 1/2 = P2
&(opt) = g 80T F o) m;ﬁ_) N;—ﬁ{-)

1+7. Yo

Py 1
+*(2ﬁ)'1]+(N-r_ﬁ'{' a) [B+@1wl'wl) (91-93‘)

1/ o
+aTmln§§] -a.NTm(ge)/ [V(a\;ﬂ_)
- ¥ (—2y) (4.6.9)

W

> >
for tmR t tpa.

For the instants t > t

o’ ‘the function g(pj,t) is the same as that
1
given by (4.6.9) except that Py = P, = R;. Specifically,
1+V 1/2 P 14V,
1 n 3 1
g(p t)a—-aa'r (—e) [*( )-1]+ (N-_a)
3 1-v; m' 2 2 ST 11,
P y
—2 - 0 - -
- la R ET /AT, (o5 = B, )]
(4.6.10)

. >
for t>tpa. tle
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The stress, strain and displacement for the region of plastic load-

ing in tension for the cases tpa.> t > tle, tle> t >tpa. and
t > tpa> t,g. &re now completely described by (4.6.5), (4.6.6),
1

(4.6.7), (4.6.9) and (4.6.10).

4-63 The Steady State Solution in the Region of Plastic Loading in

Tension

The residusl stress TR and €R are obtained by setting the

temperature T(x,t) in (4.6.5) and (4.6.6) equal to zero, whereas the

permanent deformation UR is determined by letting the time t in

(4.6.7) and (4.6.10) tend to infinity, and by replacing Py bBY Ry,
03 with Rll' The results are
OE M' + aEl/l-:U oE,
1 1 a8
T(x) =M+ =~ ) - (2B = === =M)]T =
R l-IJl 2B = oml Il.--‘l/l l~1/1 m Xx
M' + OB /1-V. Y,
1 1 lo
@ mwaE i, * ) BY* 5ras Ay O -28)

(4.6.11)
144 N'- (149, /1Y) @
o) = 00 - ) - oy — (B - -1, §

N' - (149,/1-1) @

2y
o]
NEREVEA by, + 3 + & /A1) (M - 28)]

+

- v
T Get/i) o Vo} (4.6.12)

B+ aEl/”a(l-VlT
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143 ¥ - (4/14) a o
UR(x)'[(N-T-—D_l a)-a-@lf:ﬂf 2B-ml-ad)]1'm&.ln%-ll—

N - (1+1/l/1-z/1) a 2y

O
RS by, + 57 & /2(11;) (u - 28)]

N - (149,/1-) 141, R,y

* OBvaE /) yO}(Rll'x)+[(“'1_-r/"1'°‘)‘Tml“§'1"
1/2

Yo 1+ .
*Fvamrgy FutRa)l oo et (ze)
(4.6.13)

The stresées, straeins and displacements in the regions lying beyond

p; are derivable from the relevant formulas in sections 4«3, 4-i4 and

5.
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Chapter 5. An Elastic Perfectly Plaetic Response of s Half-Space to a
Uniformly Applied Heat Pulse
5=1 Introduction

The solution for the response of & half-space subjected to a uni-
formly distributed heat pulse was presented in the preceding chapter;
the medium wes assumed there to be elastic, linearly strain hardenihg,
and possessing a temperature dependent yileld stress. In this chapter
the same problem is reconsidered for the cases of perfectly plastic re=-
sponse with temperature dependent yield stress, and also assuming the
yield s'ﬁress to be coustant.

The requisite solutions may be cbtained by a direct calculation,
or as special cases of the solution for strain hardening materials.
Since the pattern of growth and decay of various elastic and plastic
regions is essentially the same, we shall not give a detailed discuse=
ion of the solution, and limit the presentation to a statement of the
solutions for stress, strain and displacement in the different regions.

The chapter is divided into two parts: In Part 1 we investigate
an elastic perfectly plastic medium with a yield stress varying linear-
1y with temperature, whereas in Part 2 the yield stress is taken to.be
constant. The elastic solution is the same for both cases, and is sup-
plied by (4.3.8), (% 3.9) and (4.3.15).

5-2 Part 1. Reponse of an Elastic Perfectly Plastic Medium with a

Yield, Stress Varying Linearly with Temperature

5-21 The Plastic Region

As before, we use the yield criterion of Tresca, so that ylelding
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is assumed to occur when the maximum shearing stress becomes equal to
the current yleld stress v, in shear. The value of the yield stress

Y. is now given by,

(<

Y, = ¥, - BT (x,t) (5.21)

and, by (3.3.3),(3.3.4) the yield functions assume the form,

T
RO R S
T
#2) o . = - (v, = B
where (5.22)
JCD R S T
2 2
OO R S Sl
2 2

Moreover, since 'ry =T, Ve have that

In the present case the maximum shearing stress in the plastic

region is always equal to the yileld stress; therefore, by (4.3.12),
T(xt) = - 2 [y, - B(x,t)] (5.2.4)

The strains are obtained by (3.3.5), Hooke's law, and the condition

that the total strains in the y and 2z directions are zero., Speci=-



fically, from (5.2.2) follow the relations

2 af(a)
B, = afl a(@) &-x—- = !2'- (1), -;-x(a) - -;- (M) = A (a)

“,'Sz=a§1 x(a)%f:"_)g_%x(l)“%x(a)“%x (b)
i--gt i ran (@)
{28t +ar (a)
s, ==& (e)

Moreover, (5.2.4) implies that

2 Bp ()

e
]

The solution of the five equations (a), (b), (c), (d) and (e) for

the five unknowns 8 sy, 6x’ év and A then ylelds

1.y .
A = a%y -—,E-l—l +2aT s (5.2.5)
1-1 -
e, =A= (4B E +2alT ’ (e)
1=V .
ay---;- ma-il-l +2al T , (n)



and the total strain rates are expressed by

W1 -2 1/1)
[
X X El

B+ 5a]'i'

(1)

(3)

(5.2.6)

(5.2.7)

The corresponding relations for regions in which plastic flow is

induced by cooling can be found without difficulty, keeping in mind,

however, that during the decrease in temperature stresses in the y

and 2z directions are tensile rather than compressive.

of (5.2.2) the yield functions are now given by

T

) o Xy - )
T

2 o 2 Ly o)

1) =_;1= "_x;_‘ﬁc_

2 T V., =V

£2) _ 2_2_ _ .z 2x
Since T_ = =«
y z

L) | (2) 1) _ 52

In the place

(5.2.8)

(5.2.9)



The stress and strain rates in the region in which plastic flow is

induced by decrease in temperature may now be expressed by

T, o= 2 (v, - BT)
(5.2.10)
T = =287
y
1=y .
v o= B — l.2alr (5.2.11)
1
. W1 -1) .
€ =8 +£ = [= B+3alrT (5.2.12)

X X X El

In order to calculate the strains from (5.2.6), we integrate between

the limits t and tlx' Noting that
1 +1Jl
e P R e A Y

1s given by the elastic solution (4.3.8), and that by (4.4.6),

g
Mx,t),) =Ty = 57 orlo/éq =7y (4.4.6)R

the total strain is then found to be

41 - 22/1)
€ (x,8) = [ E, B+ 3 a] T(x,t)
1+y W1 -22.) y
1 1
+[l_1/la- El B-Ba]B*’@loﬁ(l-yl)
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where

2
- x fhKt
x,t) = T 9-32% e (5.2.13)

The corresponding displacement is obtained by integrating (5,.‘2.13)

between the limits x and pl:

Ki-27,) 1/2 P
U(x,t) = [ .El,l' B + 3] xma(%e)/ L %/%) - v(a 11-. ]
. ' K
WY, ¥(1-27,) Yo
© g o —g— 3 srayarrg K- 8

ar (27 Wi - 1)
+ a Ze -
i-’l/l m® 2 2%&2‘)

for P> x>a , tH>t>t
(5.2.14)

or PP =xX2 P, tle>t>tm

where Dl and p

spectively.

5-22 ' The Elastic Region of Unloeding

, are determined fram (4.4.5) and (4.5.1), re-

The stress and strain rates in this region sxe given by

s () = - ?%;I 2(x,t) (4.5.3)m

. l+1/l .
€, (x,£) = 7, Axt) (4.5.4)R



Integrating (4.5.3) and (4.5.4) between limits t and b

vhere t>t , we find, by (4.2.6), (5.2.4) and (5.2.13), that

& &

Ty(x,t) = - i—_—q T(x,t) + [( 1‘7/1 + 2 B)Tm-:'-c- -‘2 yO]
(5.2.16)
1+ 1/l . v,
(0t) = ot @ [Mt) - T 34 §rag /o o))
W1-27,) o v,
+ [-——"El B+5a] [Tm;-iml
(5.2.17)

Both (5.2.16) and (5.2.17) are applicable for values of x such that
p2; X >a, tpa.> t >1:m and p2> x> p3 for t >t pa’ where tpa.

and p, are determined from (4.6.2a) and (4.6.2b) by setting there By

3
equal to zero.
Integration of (5.2.17) now gives

1+ V.

1/2 p P
U(x,t)=]-_:-1—/-:]:'-aa'1‘m(%e) [#(Q}T) -V(aj,&_) +*(;:/-F5L-) -1]
4(1-27.) 1+ vV
+ [( Ell B+5a-£—27-1- al [Tmaln:—;
1

y k(1-27,) 1/2 p
-5 @135(1_1{7 (x=p;)1 + [ ) 13+ 3] T a(Fe) ['(_2/.(_2_{)

.y (S
SV Sgﬁg?] (4.2.18)
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for o

Paz2x 2P , t l>t>tpa
or /
1+ 1/2
1 b1 X
U(x,t) = aaT (=e) [¥ ) - 1]
11/1 m ‘2 2 /Rt

W(1-27.) 1+
1 1 rm 1 ?i_
Pl - ol e I it S (T )

(Rl - xl)] (5.2.19)

where t , o R
m

17 Ry P t e in (4.2.18) and (4.2.19) are determin~

1
ed fram equations (4.2.4), (4.%4.5), (4.4.7), (4.5.1), (4.5.2) respect=-
ively.

The residual stress, strain and permanent deformation obtained
from (5.2.16), (5.2.17) and (5.2.19) are expressed by

(5.2.20)

TR(x) = (g/l—l' + 28) Tm% -2,

l+(1-27/l) 1+ a
i) = [—g B+ 2 - ¢

yO
"B oy /A1- 7))

(5.2.21)



1+ 1/1

1= Vl

y(1-2V

Up(x) = [ E

1)

X
B+3Q = a]['rme.lnﬁ—

1

v,

o 1+, ‘ x 1/2
* By & /2(1-7,) (Ry - x)] - -7 sal (3e)

(5.2.22)

The equations (5.2.20), (5.2.21) and (5.2.22) are valid only in the
reglon R]_? x>a8a for Tm< TM’ and in the region Rl> x> Rll for
Ty~ Ty» Where T, is determined from (%.6.3) by setting My in it
equal to zero.

5=23 Plastic Region Formed During Unloading

If the maximum boundary tempereture ’I‘m is greater than TM’
given by (4.6.3) for the case when My is zero, plastic flow occurs
again during unloading. This flow begins at the boundary for the ine
stant tpa’ and, subsequently, & new elastic-pla.st‘ic interface, speci=-

fled by x=p propagates from the boundary into the interior. This

3,

interface eventuslly reaches the position x = R as the temperature

11
T of the medium decreases to zero. We let tpx be the instant at
which ylelding occurs at the position x during unloading. The values
TM’ tpx’ tpa.' 93 and Rll are given by the following equations as
a result of setting the shear modulus up equal to zero in (4.6.3),

(k.6.2), (4.6.28), (4.6.2b) and (4.6.4):

by
™ - (OlEl/i-(;/l + 2B (5.2.23)



a8, /2 -8/ €
(a'l-y)Tmae e + l-}V"'zB)Tm%
1 v 2 l,bpx 1
= by, for T > T, (5.2.24)
2
/2 -aS/ik t o,
(2B - ==—) T 22—t +(s—==+ 2B) T
l-‘I/:L m ,/-2'(_1;" 191/1 m
= 4 ¥, for T > T, (5.2.25)

/2 - pi/l#(t
e

L a e 1 a
TV, W E =7, m Py
= by, for T > T (5.2.26)

T ( -V 2B)
Ru=a 2 o@%/;o L7 (5.2.27)

In the plastic region formed during unloading the stresses in the y

and 2z directions are tensile, and expressed by
T(xt) = T (x,t) = 2 [y, - BT (x,8)] (5.2.28)

vhereas the strain rate is given by



(1-2 1/1)
E

¢, (x,t) = [3a- B T (x,8) . (5.2.12)R

If the equation (5.2.12) is integrated between the limits t and tpx

where t> tpx, then, by (5.2.24) and (5.2.17), the following result

is obtained:
(58) = 130 - oot 5 (0 + (e 5
e (x,t) = aQ - —————— B} T(x,t) + |=————==B+ 3
x E, ? E,
+7/ y W(1-22.)
1 a (o] 1
- 1-1/l‘°’][Tm x "B+ oE /21 1/17] * ['—E‘l‘"" B
1+ 2
1 1. a aEl
- a k -7 = (2B
X+ -7, 1 55 = oE, /1-7/; by, -1, 5 (@B~ 1-’171)]
for P3 >2x2a and t > tpa (5.2.29)

Integration of (5.2.29) further gives

W1-274) 1/2 P
Wxt) = G - —g—=3lat, (Fe) Iy (2;@’ - w(;—;_{—)]
1+(1-22/l) v

X

1 ¥
El B+3a'1_."7;a][Tmaln%-B"’dEl%é(l-z/l)

+ [

k(1-2 Vl) v, 4 ¥,
(x-p5) 14 {-—-ﬁ-l— B - 30+ 7 al [23&—171'7/1 (x-p})

2B + OF /1-V, N
T -ax /17, T, 81 5 I+ g (pgyt) for py> x(; a "
5.2.




where y /
1+ 1/2 P P
1 % 3 2
g(p.st) = aaT (ze) v ) - ¥( )
AR SR 2 KT 2 R
y(1-27.) WV P
1 1 3
+ ¥ ) -1) 4+ [=—s—=B+ 30 - a][’l‘ a ln ——=
2 /KT B 1-7, P2
u(l 2v,) B 1/2
iy oa;l7 -7 )("3“’1) E B+ 30l a (Fe)
- ¥W(—2)]
/_ 2 /Kt
for tle> &>t (5.2.31)
pa
Alternately,
V. 1/2
(P, t) = == aatT (Ze) W ) - 1]
5 -7y m:®2 2 Jkt
u(1-27/l) I+ o
A - 2
+ 0 E, B+3a 7, al [T alnﬁl
Y, :
* B+ o€ /2(1-7;) (B - °5)
for t> tpa> tle (5.2.32)

where tmR y Py Pg and tpa in (5.2.29), (5.2.30), (5.2.31),
(5.2.32) a.re determined from (4.2.%), (4.5.1), (5.2.26), (5.2.25),

respectively.



The residuval stress, strain and permanent deformation for this
region are found fram (5.2,28), (5.2.29), (5.2.30) and (5.2.32). Thus

we obtain the following results

o= 27, (5.2.33)
4(1-2 1/1) 1+, a Y,
ep(x) = [——EI—-B+ X - -lfy—i'a]['l‘m; ol & /T 7 ]

4(1-2 Z/l) 1+,

1
+ 1 E, B -3+ 7, @] 3= E0/1-7, 4 v,
aE
a 1
-1, 5 (2B + -;T/'I)] (5.2.34)
x) [u(:.-avl)B - 2/ | [m a1k
X} = + - a a8 —
Ug E, -7, m R
Yo 4(1-2 Vl)
*Era ATy R g B
4+ 2B + OE, /1-1/ R
1 1/ 11
— T 1n —=
Y17 ol [ ToE /-y, m* Tk
4 Y,
T By, o] (5.2.35)

Equations (5.2.23), (5.2.34) and (5.2.35) are valid only for the region

Rj,> x>a where R is determined by (5.2.28).

11
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5-3 Part 2. Response of an Elastic Perfectly Plastic Medium with a

Constant Yield Stress

If the infinite half-space is subjected to a uniformly applied heat
pulse at 1its boundary, and if the medium is assumed to be elastic, per-
fectly plastic with a constant yield stress, the solution is readily ob-
tained as a special case of the results described in Part 1 of this’
chapter. Specifically, the equations describing the stress, strain and
displacement in various regions for the medium considered here may be
deduced by setting the quantity B equal to zero in the corresponding
equations derived in Part 1 of this chapter. The results of this sim-
plification will be presented in the subsequent sections, the elastic
solution being again given by (4.3.8), (4.3.9) and (%4.3.15).

5-31 The Plastic Region

In this region, by (5.2.10), (5.2.13), (5.2.14), the stress,

strain and displacement are expressed as follows:

'ry(x,t) = -2y, (5.3.1)
vy, 2(1- Vl)
€ (x,) = 30 T(x,%) - (3 - 3= 7 ) 5 Y (5.3.2)
1/2
[(x,t)zaaTm(%e) [3[‘?(2\&)-‘#(2‘/_

14V p 1+, 1-7.)
1 1. 1 1l
+ [w( ) = 1)) + (3 - ) v, (p, - x)
1-7/1 2 /Kt l_Vl’ E (o] l
for pl>x>a ) tm2t2t1 ’

(5.3.3)
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vwhere o, is determined from (%.5.1) and p, from (4.4.5) by setting B
there equal to zero.

5-32 The Elastic Region of Unloading

From (5.2.16), (5.2.17), (5.2.18) and (5.2.19) follows that the
stress, strain and displacement in the elastic region of unloading may

be written as

aE, .
Ty(x)t) = = m{ [T(x:t) - Tm ;]' 2y° (5-3)4‘)
WU 1+ 2(1-%)
e (x,t) = 1-2; a (x,t) + (3a - T-—Vi'a) (T, % - -—Ezo—,l—yo]
(5.3.5)

Both (5.3.4) and (5.3.5) are applicable under the conditions

s
92>x>a P) tpa>tf/tm P)

or Py 2 X P 05 » t > tpa
1+1/
1 n _\1/2 x
U(x,t) = aafT (ze (¥ (—==) - 1]
(X) ) 1_7/1 m (2 ) (2 Kt
0 1/ .. P2 Py
+ 3a-gzra) et (Fe)° [« ) - ( )]
( 1-U n *2 2 /Kt 2 /Kt
2(1- X
+JE-1FZQ}’O (pl -x)+Tmaln5-;—J
for
) ;? x 28 R tpa:> t > tm s

(5.3.6)

Py > X 2Pz tle>t>tpa :
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or
(x,t) 1+ IV x
Ux,t) =g aat (Se)  [W(—E=) -1]
1l 1/1 m* 2 2 /KT
142/ 2(1-1/1) x
+(5°"1-Va)[ = Yo (Rl—x)+Tma.lnT]
1 1 1
for Rl) x>a , tpa.> t>tle »
(5.3.7)
Rl> x>93 , t>t_ > tle
vhere P, P,, t, tle, Ry, tpa, and 05 in (5.3.4) to

(5.3.7) are obiained from (4.%4.5), (4.5.1), (4.2.%), (4.5.2),
(%.%.7), (5.2.25) and (5.2.26), respectively, with the quantity B in
these equations being set equal to zero.

From (5.3.4), (5.3.5) and (5.3.7) we now obtain the following
results for the residual stress; strain and displacement:

E,a

Tpix) = 1_{1/1 Tuy " (5.3.8)

1t a 2(1-Vl)
GR(X) = (30 - 371-0!) (T, = - —-E_:ia-— ¥l (5.3.9)

1+ < 2(1-%)

Up(x) = (- 7, @) [T aln R + Eg (R x)]
V. 1/2
1 b1

- T‘Tl.mm ( 3 e) (5-3-10)

Equations (5.3.8), (5.3.9) and (5.3.10) are valid in the region

Rlz x>a for '1‘m<'1‘M 3 or in the region Rlz szll for
T> Ty vhere by (5.2.27), (5.2.23), Ry, eand T, sre expressed in the

present case by
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acfT
R, = h—;:‘ ?1-71- (5.3.11)
-4
Ty = b Y, “—ET (5.3.12)

5-33 The Plastic Region Formed During Unloading

If the maximum boundary temperature Tm is greater than TM glven
by (5.3.12), a new plastic region of unloading emerges from the boundary
at the instant tpa. . This region eventually extends to the position
X = R.Ll which is given by (5.3.11). The relevant solutions for this
region are found from (5.2.28), (5.2.29), (5.2.30), (5.2.21), (5.2.32),

and. are as follows:

Ty(x,t) = 2y (5.3.13)
W2 2(1-{)
e (xt) =3aT (xt)+ (3a -7 2/ a) E1°‘ Y, (5.3.14)
. 172
U(x,t) = 30T a(3e)

2 JKt

1+Vl 2(1- 1/)
+ (m - l_I/l a) E Q y (x 93) + & (93,t)

for 032 x>a ~ (5.3.15)
T eyt - f:l sar (Ze) [H—2e) -1)
1 2./kt
+(3a- TZ) [ a T ( %e)l/2 t(zJ; ) - ¥ (:IKt )]
+f-(-:T;ayl—)yo(pl-p5)+Tmaln§§-} for tle> t> ¢

(5.3.16)



or
1+Y. 1/2 [ 1+7,
1 T . 2 1
g(Pyyt) === aaT ( ze) [« ) -1l+ 3 a - a)
3? 1-7 m " 2 W 1-7,
P 2(1-V.)
[Tmaln-%+ aEl yo(Rl-pi)]
1
for
6>t > tle (5.3.17)

It should be noted that P and tpa in (5.3.16) and (5.3.17)
can be determined from (5.2,26) and (5.2.25) with the quantity B there
being set equal to zero. Finally, the residual stress, strain and

permanent deformation obtained from (5.3.13), (5.3.14), (5.3.15) and

(5.3.17):

T(x) =2y (5.3.18)
1-!—7/l 2(1-?/1)

gx) = Ga - 7 a) £ Yo (5.3.19)
1+l R

UR(x)=(5a-l_éa) Tmalni‘-i—l-

2(1-7) 1+ 1/2
+—7E1—a-i- ¥, (x+Rl-2Rll) -J.-'—P;Ltaa'rm(%e)

(5.3.20)

The equations (5.3.18), (5.3.19) and (5.3.20) are applicable only in the

region R,> x >@& vhere R,, is given by (5.3.11).

ra



Chapter 6. Elastic Plastic Response of a laterally Constrained Plate
to a Uniformly Applied Heat Pulse.

6-1 Introduction

Transient thermal stress analysis of free plates has been treated by
Weiner, Landau, Zwicky [6.1] [6.2] [6.3], Yushel [6.4], and most recent-
ly by Mendelson and Spero [6.5]. In this chapter, we shall consider the
response of an infinite plate constrained in the lateral direction, and
subjected to a uniformly applied heat pulse al one boundary, the other
boundary being held fixed and either mainteined at zero temperature or
insulated.

The purpose of studying a plate of finite thickness is to remove a
basic shortcaming of the solution found for the half-apace, namely, the
absence of & characteristic dimension of length. Specifically, we shall
relate the dimension of the plastically deformed region to the plate
thickness and thus establish a basis for obtaining approximate solutions
of plate problems from the corresponding solution for the half-space.

If the mechanical and thermal boundary conditions for a plate
problem are similar to those applied for the half-space, then the
analysis will also be, in essence, identical with that carried out for
the half-space. In fact, the specific solution derived in Chapters 4
and 5 also apply directly for plates, provided that the temperature
distribution for the half-gpace is replaced by the appropriate tempera-
ture distribution in the plate. Therefore, let us first investigate the
temperature solutions for plate problem.

6-2 The Temperature Problems

The temperature distribution in an infinite plate, produced by &

beat pulse applied uniformly at one boundary, the other boundary being



maintained at zero temperature, may be obtained by superposing the

temperature fields induced by a suitably located instantaneous source

and sink.
Plane /// Fixed | Plane Sink
Source or Source

/ Boundary

~
[

71+L

0

7I4L-x (/ / / yIAlax
0

Fig. 6-1. Location of Source and Sink for a Plate Subjected to a Uni-

T
:
N\
AN

g
g3
B
4

formly Applied Heat Pulse at One Boundary, With the Other

Boundary Either Maintained at Zero Temperature or Insulated.

Let the plate be initially at a uniform temperature T 0 ° We
characterize the origin of coordinates as shown in Fig. 6-1, and assume
that the boundary x = o 1is fixed while the other boundary at x = L
remains free. An instantaneous plane source and sink of equal strength
are placed symmetrically to the x = o plane; due to the symmetry of
these locations, the temperature change at x = o is zero. At the free
boundary, or at any other plane between the two boundaries, the tempera-

ture will increase from zero Yo a maximum and again decrease to zero.
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The superposition of temperature solutions due to a source and a sink to
describe the increase of temperature over the reference temperature '1‘0

is thus expressed by

2 2
L+L-x 7L-Ikx
Tt = 0y g Lo T L ) (6.2.1)

Here Cl is & constant, I. denotes the thickness of the plate, and 7L
represents the distance of the source from the free boundary (Fig. 6-1),
the quantity 7y being an arbitrary constant. By varying 7 , the shape
of the heat pulse, or, equivalently, the time rate of increase of temper-
ature may be sdjusted. By inspection of (6.2.1) we find that T = o for
x = 0. 1If two sources of equal strength are placed symmetrically to the
X = o plane, then no heat will be transferred across this plane, and the
temperature distribution will correspond to the case when the plate is
subjected to & uniformly applied heat pulse at the free boundary while

the fixed boundary is insulated (Fig. 6-1). We find

2 2
T L~x T+1dx
T(x,t) = C, :1%2- [e” Ixt +e = Ikt | (6.2.2)

vhere C2 is & constant.

The maximum temperature me sttainable at an arbitrary plane x
in the plate, and the corresponding instant tmx at which the tempera-
ture assumes this value me are very significant in the anslysis of the
mechanical response. In order to evaluate me , 1t 1s first necessary

to detemine tmx from the condition

%)x -0 (6.2.3)



The solutions appropriate to (6.2.1) and (6.2.2), respectively, are

then given hy

2 2
JR 2 o 0 N e (Latex)®,
mx 2x mx 2«

t;mx
- §7L+L-x22 - $7L+L-x22
tmx -e tmx
for
L>x>o0 (6.2.4)
and
L-x ﬁv—l—
- ‘ﬁ_“)“ !..T‘xl. LZ____L]
(7L+L-x2 (ﬁlﬁ-Iﬁx)
t
for
L>2x> o (6.2.5)
The constants C; and C, in (6.2.1) and (6.2.2) may be eliminated
by introducing the maximm values T ul, ordinarily assumed to be known,
for the plane x = L . Denoting by t il the instant for which

T = T,; » We obtain from (6.2.1), (6.2.4), (6.2.2), (6.2.5) the results
1)2 2L471)2
- 1R [C29 'SWE;'L gzxaﬁKsz RVZ
17 ‘mL -%&E  (eLoL 2
e My o Wby 32 (6.2.6)
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and e Q _ (y1e2L 2

e tar (g1)° ‘e o §2L+ZL22]1/2

2K 2K
C,="T 2 2
2 mL E%Ll (a1+7L)
B A

[e + e ] (6.2.7)
vhere t = in (6.2.6) and (6.2.7) is found fram (6.2.4) and (6.2.5),
respectively.

Baving derived expressions for tmx » Cl and 02 s We are now in
& position to calculate the maximum temperature me attainable at any
point in the plate. The variations of temperature T with time t for
various values of x for both solutions (6.2.1) and (6.2.2) have been
plotted in terms of dimensionless variables ’I‘/‘I‘ml._l , x/L , and
t/L2/2K , and are shown in Figs. 6-2 and 6-3, respectively.

6-3 Response of a laterally Constrained Plate to a Uniformly Applied

Heat Pulse at Its Free Boundary With the Fixed Boundary Maintained

at Zero Tanpera.tu:re

The plate considered in this section is one constrained in the
lateral directions, with traction free boundaries x =o and x=1L .

The solution

U, = U(x,t) Uyy =V, =0 (6.3.1)
Ty'y =T, =7 T = © (6.3.3)

then satisfies both the stress eguation of equilibrium and the traction
boundary conditions. A further boundary condition 1s imposed on the
displacements by

U,=0o & x=o0 for t>o (6.3.4)
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The similarity between the problem for & plate and the half-space
becomes evident from inspection of equations (4.3.5) to (4.3.7). In
particular, comparison of the temperature distribution represented by
Fig. 4-2 and Pig. 6-2, and the fact that the temperature and displacement
in the half-space were assumed to vanish for large x , bring out
clearly the analogy between the two problems. Therefore the response of
the plate to the uniformly applied heat pulse represented by (6.2.1) is,
in essence, the same as that of the half-space. Especially, if the
proper temperature functions are used, the equetions describing the
transient and residual stresses and strains in the half-space may be used
to describe the corresponding quantities in the plate.

During the initial stage of the heat pulse, the entire plate is
elastic. The non vanishing stress and strain camponents are given by

(h¢3o9) and ()-#.3.8) H

o E
T = Tyy = TZZ = - W T (h.5.9) Re
l+Z/l
€ = Gxx = l-]/l arfT (h-3.8) Re

The maximm shearing stress is represented by

L
qQ= - 5= m T (h.}-la) Re
vhere the temperature T for (%.3.9) Re, (4.3.8) Re and (4.3.12) is
given by (6.2.1).
The displacement U  1s obtained by integrating (4.3.8) Re in

conjunction with (6.2.1). 1In view of the condition (6.3.4) we obtain the
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result
U (%,t) = ;11;1- o ¢ (w)/2 [oy(Lhy) . LK) _ y (Zlalex )
1 2 /Kt 2 /Kt 2 Jkt
(6.3.5)
| I '
Saurce l I'ree Ll Fixed I Source of
Plane : Boundary | Boundary | Sink Plane
[
| | Ry |
I R, |
I | |
| | i
I
L 1x Jo |
| | |
be— (714 L-x) e {7141t x) ———ee}
| l
I j | l

Fig. 6-4 Boundaries of the Total Plastically Deformed and

Steady State Plastic Reglons in the Plate.

It is seen from Figs. 6-1 and 6-4 that the origin of coordinates is
chosen at the fixed boundary of the plate instead of at the source
plane as was done in the case of the half-space (Fig. 4-10). Since the
heat pulse is applied at the plane x = L, the dimension of the total
plastically deformed region and that of the steady state plastic region
are given by (L - Rl) and (L - Rll), respectively. Here R, and
R still denote the distances between the origin and the boundary of

11
the corresponding regions. In order to estimate the damage produced by
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the heat pulse, the location of the boundary of these two regions will
now be determined. By the criterion of Tresca, yielding occurs where-
ever the maximum shearing stress becomes equal to the yield stress in
simple shear. From examination of (4.3.12), (6.2.1) and Fig. 6-2, it
is evident that the initial yielding starts at the boundary x =L
(Fig. 6-4), and that the elastic plastic interface will progress into
the plate from this boundary as the temperature continues to increase.
Following the same reasoning as that presented in section 4-&, the
boundary of the total plastically deformed region is thus determined

by solving the following two simultaneous algebraic equations:

LR, _ (1eR))?
It ey .
"Ry (rL-r)? L (R,
(e % " e
e
1 2 2
. (14L-R)) - (r1+14R,))
. u——-—tmR - e —EK———-h—-tmR (6.3.6)
1 1
and
y
(0]
B+ Bo/A1-7) ngl (6.3.7)
2 2
where B (7L+L-Rl) - UMMRl)
T =C 1 - tle thle
rRy 1 1/2 le - e ]
Ry

Here, it may be noted that (6.3.7) 1s essentially identical to (4.4.6).
Simple and explicit expression for Rl in terms of other known
quantities cannot be found from (6.3.6) and (6.3.7); therefore, the

following graphical method is suggested (Fig. 6-5).
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Fig. 6-5 Graphical Determination of R), and R

t
le 11
By the use of (6.2.1) and (6.2.4), the corresponding values of t

and '1‘mx for a given value of x may be calculated, and plotted as

shown in Fig. 6-5. If & horizontal of height equal to T R and given

1
by (6.3.7) is drawn, then the coordinate of its intersection with the
T curve gives both t and R,. In the cage when the maximum
mx le 1

boundary temperature T -

occurs during unloading, & new plastic region would be formed in the

is greater than TML for which plastic flow

region of elastic unloading and the steady state position Rll of this
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plastic elastic interface may be determined by locating in the plasti-
cally deformed region the plane at which the maximum tempereture attain-
able is equal to TML' We obtain the solutions for the plate in the
plastic region formed during unloading by replacing in (4.6.5), (4.6.6)
the temperature solution appropraite to the half-space problem by
(6.2.1). 1In particular, replacing the maximum temperature T a/x by

Ty, in (4.6.2), we find that

Tr, = aé [2 Yo + Z;l (M-2B)]
M+ 1 - B B + —————
2(1-111) 2(1-V1) (6.3.8)

By drawing in Fig. 6-5 a horizontal of height equal to TML given by

(6.3.8), the value of R,

7 from the point of intersection of this horizontal with the me

can be read ofi directly for any value of

curve. This process is equivalent to the simultaneous solution of the

following two equations for R and t

11 TR,
2 2
(71+L-R,,) (YI+I+R ;)
" TIKt T Tkt
1 mR, mRyy
Cl T [e -e ]
mR
M B}
y
1 0
M4+ - B B+
2(1-7/,) 2(1-¥,)

(6.3.9)
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and 2 2
(71+L-R;, ) (YL+14R, )
T Tkt T Tkt
™y (2L+L-Rll)2 "1 (71»+L+Rll)"a
(e - e ]
+ = 2K 2K
mhyy ) (71.-»1.-311)2 ) (7L+L+Rll)2
e t!nR tmR
11 - € 11 (6.3.10)

The quantity C., in (4.3.9) is given by (6.2.6). With R, and R

1 1 11
determined, the position of the steady state elastic plastic interface
and the dimension of the total plastically deformed region are known.
The remaining steps in the plate problem are entirely analogous to
those of the half-space problem, and, therefore, will not be elaborat-

ed here.

6-4 The Response of & Iaterally Constrained Plate to a Heat Pulse

Uniformly Applied at its Free Boundary with the Fixed Boundary

Insulated

The elastic solution for the present case is the same as that pre-
sented in the last section, except that the temperature function T in
(%.3.9), (4.3.8) and (4.3.12) is now given by (6.2.2). The counterpart

of (6.3.5) then reads

+V 1/2
Ulx,t) = rsz oc, (me) | [y EEEE). ey

2 /Kt 2 J/kt

for L2 x> O (6.4.1)

If the temperature 7T R given by (6.3.7) is greater than Tmo’ which
1
is defined as the maximum temperature attainable at the fixed and insu-
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lated boundary, the position of the total plastically deformed region

Rl may be obtained fram the solution of the simultaneous equations
2 2
(71+L-R,) (7L+L4R, )
" -
c L (e tle + e tle ]
2 % 1/2
mR
1
y
o)
B +
ell-vl)
and
_(7L+L-Rl)2 _(7L+L+Rl)2
it It
mR 2 mR 2
1 (7L+L-Rl) 1 (7Iﬁ-L+Rl)
e - e o + e o ]
Ry _ (1e1R))® _ (r1a14m)°
e T——tm + e T-—_—tmR
1 1 (6.%.3)
where C, 1in (6.%.2) is iven by (6.2.7). The graphical method sug-
gested in the last section for locating Rl is still applicable here.
If on the other hand, T R is less than Tmo » the entire plate would
1

experience varying amounts of plastic loading and would become elastic
again once the temperature begins to decrease.

The maximum boundary temperature TMI. for the present case is
also given by (6.3.8).

The steady state position Rll of the elastic plastic interface
in the piate for maximum boundary temperature TmL greater than TML

and for a given value of 7 1is obtained from the solution of the
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simultaneous equations

(7L+L-Rll)2 (71»1»1111)'2
© Thkt T Tkt
1 MRy =Ry
02 t——Ta— [e + e ]
™Ry
Ng
1 0
= ml [2 yO + Ela (M'aB)]
M+T—21_yl)-3 ]3+21_y1
(6.4.4)
and
2 2
_(714L-R ;) _ (71414R ;)
Mg 2 Wt g 2
11 (7L+L-Rll) 11 (ymmnll)
. [e ‘2:( + e e ]
Ry, . (7L-R,)? _ (141aR ,)?
e T—tlm + e "m—"—'—-—“"_th
11 11
(6.4.5)
vhere C, in (6.4.4) 1is given by (6.2.7). The value of R,, ' cen also

be determined graphically as was indicated in the last section.

The transient and residual solutions for the plate considered here
can be derived in the same manner as was done in Chapters 4 and 5. No
additional challenge is posed by these problems, hence, further analysis

is not pursued.



Chapter 7 Numerical Results and Discussion

T-1 Introduction and General Discussion

A shorteoming of the half-space problem is that it lacks a charac-
teristic dimension of length; in order to remove this shortcoming a
plate of finite thickness was treated in Chapter 6. We now consider the
question of whether it is possible to predict the transient and residual
stresses and deformations in & plate fram the solution of the half-space
problem. This question is considered in some detail in the following
pages.

The analogy of problems for plates and the half-space was previous-
1y veferred to in Chapter 6, and it was noted there that the equations
for stresses and strains in the half-space problem may be used for the
plate problems if the temperature function is appropriately modified.
Therefore, it is of interest to determine the extent to which special
results of the half-space problem may be directly applied tc plate
problems.

In the case that the effect of the dependence of yield stress on
temperature dominates over the strain hardening effect of the material,
the maximum transient stress attainable in the half-space is found from
(4.3.8), (4.4.4), (4.4.6) to be dependent only on material properties,
and is equal to twice the initial yleld stress in shear. The maximum

transient stress for the plate is therefore given by

Tmax 5 ~2lY, - BT
(7.1.1)

where y

o
=T =
1 “mR, B+ a El/2(1-7/l)
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A close inspection of (4.5.12), (4.6.11) describing residual
stress, and of (4.4.27), (4.5.13), (4.6.11) describing transient and
residual strains, reveals that these quantities depend in addition to
material properties, solely on the maximum temperature attainable at a
particular position, and assume their maximum values at the houndary
x = a. The highest temperature 'I‘m attainable in the half-space, and
the highest temperature T attainable in the plate are ordinarily

mL
assumed to be known. If Tm is set equal to TmL’ the maximum trens-
ient strain, maximum residual stress and strain of the half-space be-
come equal to the corresponding quantities of the plate. Therefore, in
view of the foregoing remarks, and by (4.4.27), the maximum transient

strain in the plate may be expressed in the form

l+7/1 yo
€max = N Tm - [(v - l_-_171- @) B+« El/2(1- Vl)] (7.1.2)

whereas, by (4.5.12), (4.5.13), the maximum residual stress and strain

are obtained from

oE Y
» 1 o
TRmx = (1‘1 + I:T;) TmL' [2yo + B+ aEl/(E(l“pl)_ (M'QB)] ’
(7.1.3)
1+ '1/1 o
GRm= (N -——-1_1/1 a) [TmL- B+ aEl/Q(l'V]j 1,

for T <T
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Here TML is the maximum free boundary temperature for which plastic flow
in the plate during unloading will impend. For the case when T > TML’

it follows from (4.6.11), (4.6.12) that

ozEl _M'+anl/1-yl(23-aal

TRM=[(M+ aB'aE]_ﬁ-'l -l_—”l--a&)]TmL
M ra B /1Y y
- (2 2B - ai?]?i_yl + 1) [2}’0 + E:a_zl%m (M-2B)]

(7.1.4)
e N' - 1+ /1~ @ B
*R ’““'ﬂl'a)'e]a-amlfiﬂ (2B - 1V'2“')]Tm1.

N - (142 /1-4) @ 27,
— Eli‘-z? [y, + 503 31771 —y (4-28)]
N - (+4/1-4) a

*BrarE f(l-g) Yo

It is thus seen that the maximum transient and residual stresses
and strain induced in a plate by a heat pulse associated with the maxi-
mm boundary temperature T - may be predicted by computing the corres-
ponding quantities for the half-space subjected to & pulse of maximum
value T - We also note that the shapes of the two pulses need not be
the same, but that thelir maximumm amplitude must be equal in order for
the similarity to exist.

Equations (7.1.1) to (7.1.4) together with (6.3.6), (6.3.7),
(6.3.9), (6.3.10), (6.4.2), (6.4.3), (6.4.4), (6.4.5) for the determi-

nation of the positions R, and R.. of the boundary of the total

1 11
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plastically deformed and steady state plastic regions may be consider-
ed to represent the significant parts of the transient and steady state
solutions for the plate problems.

It is also possible to obtain the residual stress and strain at
any other place in the plastically deformed region of a plate by re-
placing T

mlL
perature me attainable at that position. Since the displacement

in (7.1.3) or (7.1.%) by the corresponding maximum tem-

boundary conditions for the two problems are not exactly identical,
the solutions for displacement will differ, in essence, by & rigid
translation.

We adopt the quantities
2
T/T » X/2, p1/2; P /8, 93/9., R,/a, R /a8, U/aaT , t/a"/x

to represent dimensionless temperature T, position x, interface
positions Prs Py pj, Rl, Rll’ displacement U and time instant
t, respectively, for the half-spece problem. Here & is the distance
between the source plane and the boundary of the half-space; for con-
venience, the dimensionless time is often denoted by n.

Similarly, the quantities

T/rnm’ x/LJ Rl/LJ Rll/L

are adopted to represent the dimensionless temperature T, position x
and steady state interface positions Rl and Rll for the plate prob-
lems. The dimensionless stress and strain for both cases are expressed

by ‘l‘/yo and €/0T, respectively.
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A detalled calculation of stresses and deformations in a half-
space, and for specific data, will enable us to gain an insight into
the general nature of the thermomechaniceal response. In view of the es-
tablished similarity with plate problems, we shall also be in a position
to draw conclusion regarding the behavior of plates.

An aluminum alloy (25ST) having the following material properties

was selected for numerical calculation:

6 a = 14.5 x 107 in/infF°

E =10x10°pst. ,
K = 0.133 in°/sec. , V= 0.275 ’
Vp = 0.35 , My = 0.2891 x lO6 psi ’
6
pg = 3.9215 x 10° psi, (7.1.5)
y = yo - BT ’

where y_=23,000psi  , B=0.293x 102 pat /F°.

The data (7.1.5) represent the thermal and mechanical properties of an
elastic, linearly strain hardening medium having a yleld stress in shear
vhich varies linearly with temperature.

In order to compare the solutions presented in chapters 4 and 5, a
perfectly plastic medium, with thermal and mechanical properties identi-
cal to tnuse given in (7.1.5) was also considered, except that there the
plastic shear modulus pp and the coefficient B were set equal to zero.

In presenting numerical results, solid curves have been used for
plotting results pertaining to the strain hardening material, whereas
the corresponding plots for the perrfect plastic medium are indicated

by broken curves.
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T-2 Numerical Recsults and Discussion for Plate Problems and for the

Helf-Space Problem

The damage incurred in a half-space or plate by a heat pulse may
be characterized by the magnitudes of residual stresses and the dimen-
sion of the total plastically deformed region. As fer as the residual
stresses are concerned, the location and the largest magnitude of the
residual stress are of great importance, and will be considered first.
We recall from the discussion presented in the preceding section that
the maximum residual stress occurs at the free boundaries of both a
half-space and & plate. Moreover, the largest residual stresses in a
half-space and a plate sre equal if the associated maximum boundary
temperatures T - and T al, are the same. The maximum residual stress-
es were calculated for different values of Tm or T i, for both a
strain hardening material having a temperature dependent yield stress
and a perfectly plastic material having a constant yield stress. This
calculation was based on the formulas (%.5.12), (7.1.3), (5.3.8), or
(4.6.11), (7.1.4), (5.3.18), depending on whether plastic flow occurs
during unloeding or not. The results of the calculation for values of
T or T . rahging from 175°F to 700°F are plotted in Fig. 7-1. The

mL
critical temperatures T. and T for which plastic flow impends

1 mR
in & half-space and & plate, respec%ively, were calculated from (4.4.6),
(6.3.7) and the materisl properties given in (7.1.5). The temperature
TM specifying ineipient plastic flow in unloading was calculated either
from (4.6.3) or fram (6.3.7). It was found that

(o] O,
T, = 'rle =178°F , Ty = Tup, = 375.06°F , (7.2.1)
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for the strain hardening material, and

=T = 230%F s Ty = Ty = 460°F , (7.2.2)
1

for the perfectly plastic material.

We note from Fig. 7-1 that the maximum residual stress is linear-
ly related to the maximum temperature Tm or T _— Actually, the lin-
earity between the maximum residual stress and the maximum temperature
can be readily observed on inspection of (%4.5.12), (4.6.11) or (7.1.3),
(7.1.4). In view of (7.2.1) and (7.2.2), we further note from Fig. 7-1
that the maximum residual stress for the strain hardening material in-
creases more rapldly with the maximum temperature Tm for values of
Tm less than TM than for values of '1‘m greater than 'I.'M Here TM
corresponds to the maximum temperature for which incipient plastic flow
during unloading impends. If the maximm temperature Tm 1s greater
than the critical value ‘]!M, the material is in the plastic state in-
stead of in the elastic state as being characterized by values of '!.'m
less than the critical value '.T.‘M This accounts for the fact that the
curves relating the maximum residual stress and maximum temperature
change their slopes at Tm = TM The foregoing remarks make it clear
that the maximm residual stress for the perfectly plastic material
would remain constant for Tm greater than the critical value '.EM
(Fig. 7-1).

The dimension ~ thetotal plastically deformed region is also a
characteristic measure of the damage incurred in a half-space or plate

by a heat pulse. Therefore, we now proceed to calculate the position
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Rl of the boundary of the total plastically deformed@ region. The

positions R, and R of the total plastically deformed and steady

1 11
state plastic regions in a half-space, and corresponding to different
values of T may be calculated fram (4.4.7), (%.6.4) and (7.1.5). In
order to determine Rl and Rll in a plate, the steps suggested in
section 6-3 were followed. The dimensionless values of Rl for 7
equal to 0.5 are plotted in Fig. 7-2 both for a half-space and a plate,
y Ybeing a parameter introduced in the temperature functions (6.2.1)
and (6.2.2) to determine the shape of the heat pulse. For a plate,

7L represents the distance between the source plane a.nc.i the free bound~
ary of the plate (Fig. 6-1). Similar plots showing the variation of

both the position R, and Rll with maximum boundary temperature T

1 L
for the individual plates for values of 7 equal to 0.50 and 1.00 are

presented in Figs. 7-3 and T-k.
In the case of the plate having a fixed and insulated boundary,

two critical temperatures Tcl and 'I'c2

fically, Tcl is the maximm boundary temperature for which the bound-

ary of the total plastically deformed region coincides exactly with the

were found to exist. Speci-

ingulated boundary of the plate, whereas ’I‘C2 is the maximum boundary
temperature for which the boundary of the steady state plastic region

coincides with the insulated boundary of the plate. The values of

T, and T , are determined by setting each of the quantities T _ /
cl c2 le
T, and Tm’/ch equal to T O/T ', Here T o and T are the

1
temperatures for which plastic flow impende during loading and unload-

ing, respectively, and ’rmo is the maximum temperature a‘tainable at

the insulated boundary.
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For the nmumerical values

y = 0.50 , T o/mhL = 0.66T4 ,

m

we obtain

T, = 266.7066°F | Ty, = 561.9718°F (7.2.3)

for the strain hardening medium and

T,y = 3h.6209°F , T, =689.208°%F (7.2.4)

for the perfectly plastic medium.

The next calculation c¢oncerns the stress and deformation of the
half-space; the transient positions of the interfaces Py> Py and 93
were calculated fram (4.4.5), (4.5.1), (4.6.26) and (5.2.27). The re-
sults are given in Fig. 7-5, the maximum temperature Tm being used to
label the curves.

Next, the equations (4.%.2), (4.5.2), (4.6.2a) were used to deter-

mine the instants t t and tpa. for the values 300°F, hOOoF,

’
1 le

500°F, 600°F and 700°F of the maximm boundary temperature T - The

dimensionless results of this computation together with Rl and Rll

for the above mentioned temperatures are presented in Table T-1.

It was shown in chapter 4 that, if the maximm boundary temperature
T, 18 greater than the value T, given by (4.6.3), and if the instant
t is greater than the instant tpa.’ then four regions exist simultan-

le

eously between the instants tpa. and t . in the half-space. This may
1 (
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be verified in Fig. 7-5 for values of T  equal to 600 F and 70O F for
the strain heardening meterial, and for Tm equal to 700 F for the
perfectly plastic material.

We observe from Fig. T7-5, or fram (4.4.7), that the same maximum
boundary temperature Tm will affect plastically a larger region if the
yield stress 1s temperature dependent. The same observation is wvalid,
of course, also for plates.

Making use of Fig. 7-5, and letting T, = 400 F, stresses and
deformations were calculated from (4.3.9), (4.3.8), (4.3.15) for the
elastic region, from (4.4.26), (4.4.27), (4.%.28), (5.3.1), (5.3.2),
(5.3.3) for the plastic regions, from (4.5.5), (%.5.6), (4.5.7),
(5.3.4), (5.3.5), (5.3.6) and (5.3.7) for the elastic region of unload-
ing in both the strain hardening and perfectly plastic media. The
dimensionless results of the calculation are presented in Figs. 7-6 to
T-11. As time goes on, the transient stresses and deformations tend to
their steady state values which were computed from (4.5.12), (4.5.13),
(%.5.14), (5.3.8), (5.3.9), (5.3.10) for the steady state elastic region,
and from (L4.6.11), (4.6.12), (4.6.13), (5.3.8), (5.3.9), (5.3.10) for
the steady state plastic region. The dimensionless results of the
computation for different values of the maximum boundary temperature
Tm for the residual stress, strain and displacement are shown in
Figs. 7-12, 7-13, and 7-l4, respectively.

Fig. 7-6 shows that the largest compressive stress induced in the
plastic region is greater im the perfectly plastic medium than in the
strain hardening medium having a temperature dependent yield stress.

The same is not true, however, for residual tensile stress. This is
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due to the fact that the transient stresses in both the strain hardening
and perfectly plastic media, after falling back fram their maximum value
in compression to zero, begin to increase in the opposite direction; the
transient tensile stress in the strain hardening medium is at any
instant higher than that in the perfectliy plastic medium (Fig. 7-6) and
eventually assumes & steady state value also higher than the one assumed
by the perfectly plastic medium. The transient and residual strains and
displacements are, however, greater in the strain hardening mediwm, as
may be seen from Figs. 7-7, 7-8, 7-10, 7-11, 7-13, and 7-1%. Another
point worth noting is that in both the transient and steady state solu-
tions (Figs. 7-9 to T-1L4) the stresses, strains and displacements are
always greatest at the boundary. We further observe from Figs. 7-12 and
T-13 that the residual elastic stress and strain increase much more
rapidly with the maximum boundary temperature Tm than their plastic
counterparts in the total plastically deformed region; the position Rll
of the steady state elastic plastic interfaces can be read off from
these figures by locating the planes at which there is an abrupt change
in the slope of the curves. For T = 400 F, the maximm transient and

residual stresses, strains and displacement were found to be as follows:

Ty/yo = - 1,5488 , st n=n =9.2085 ,
eﬁ/a T, = 2.5840 at n = 1.00 s (7.2.5)

rR/yo = 2,3767 , €pfoT = 0.8295, UR/aa T, = - 40147



137

for the strain hardening medium and

ry/yo--z.ooo , at n=n, = 0.3050 ,

1

eR/a T, = 2.2860 , at n = 1.0000 (7.2.6)

TR/yo = 1.4800 , eR/a T, = 0.5174 UR/aa T = - 3.7950

for the perfectly plastic medium.

Recelling the discussion presented in section 7-1, we conclude that
the values given by (7.2.3), (7.2.4) for the maximum transient and
residual stresses and strains also represent the corresponding quanti-
ties induced in a plate by a heat pulse of the same maximum amplitude,
i.e., for T, = koo F.

The transient displacements are shown in Fig. 7-8; the fact that
even in the elastic region the residual displacement does not vanish
is due to the regularity conditior."' used. Therefore, in presenting the

permanent deformations in the half-space, the quantity

[Up/ax T+ (147,/1-1) J_g‘_‘e]
was plotted against position x/a (Fig. 7-14). The resulting curves
are found to decrease from & maximum value at the boundary of the half-
space to zero at the boundary of the total plastically deformed region.

T-3 Further Discussion

In the preceding sections of this chapter we determined the
dimensions of thé total plastically deformed and steady state plastic

regions and also obtained expressions for the residual stresses and

1T cf. see equation (4.3.6)
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strains caused by a uniformly applied heat pulse to the boundary of a
half-space and a plate. We are now confronted with the problem of
predicting the response of the medium to an additional heat pulse
applied after conditions produced by the first pulse have reached a
steady state. 1In varticular, we would like to find the amplitudes of
the second heat pulse for which plastic flow will recur.

Let us consider the application of a second heat pulse in some
detail, assuming that steady state condition has been reached for the
first pulse. The relation between maximum shearing stress q and

temperature T 1s given by

CZEl .
q = m T » (7-14--1)

where the maximum shearing stress q will increase from its residual
value 94 as the temperature T increases from Zero. Thus integration

of (7.4.1) yields the relation

. T+ (7.4.2)
q 2(1-7) R : s
Recalling,
T TR
qQ=-~- —%— ’ qR = - T » (ho}olz) R

we may write (7.4.2) as
aEl T

R
q = m T - -é-’ (7.&.3)
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where ‘rR is the residual stress for which the distribution in the
half-space is shown in Fig, 7-12. Plastic flow due to biaxial com-
pression will resume wherever the maximum shearing stress q given by

(7.4.3) vecomes equel to the current yield stress Y, 1in shear, vhere

1 "
Yo =¥y - BT + 7= zup P (7.4.%)

The relation (7.4.4) is actually the relation (f) in section L-42.

q

!
= Pg—={p' I~

-q

Fig. 7-15 Shearing Stress, Strain and Current Yield Stress

From Fig. T-15 we observe that

"

P" = pp+p )
pR being the principal residual shearing strain,

p':--——

%p
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If we recall that

€ T

R
pR = -—2- ’ q_R = - —g— ’ (h.}.lE) R

then the expression for the current yield stress becames

€
yc=yo-M+1%;(2pp—%+s—g) (7.1&.5)

Replacing q 1in (7.4.3) by y_ given by (7.4.5), we find the tempera-
¢

ture Tlx' above which plastic flow will again occur as the result of

the second heat pulse:

t yO TR 8 eR
Tlx ol aElf2(l- l) 1+ 1/2 3-’: (1 + i-'-.;) + E-% -—3;.-] . (7.4.6)

As may be readily seen from (7.4.6), the temperature T',, 18 not
constant but varies with the residual stress and strain in the total
plastically deformed region. In the region that has never been plasti-
cally deformed, the residusl stress R and strain €g 8re zero, and,
in this case, (7.4.6) reduces to the form

' yo
1 B+ OF,/2(1-%)

T (7.%.7)
identicel with (4.4.6). Therefore, as long as the medium remains in the
virgin state, the temperature above which plastic flow is incipient
remains equal to Tlx’ regardless of the number of pulses to which the
medium may have been subjected.

With the valves of the residual stress and strain given in

Figs. 7-12 and 7-13 for the half-space, and the values of the maximum
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residual stress and strein obtainable from Figs. T-1 and 7-13 for the
plate, the temperature ‘1‘]'Jc for the strain hardening medium, and

corresponding to different values of T n or T

L’ W88 calculated, the

results being summarized in Table T-2.

Table 7-2 Temperatures Corresponding to Recurrence of Plastic

Flow at the Heated Boundary of Half-Space or Plate

O, (o) O O, O,
T = Tor, 300 F 4LOO'F 500" F 600°F TO0°F
Tiy = T’““l(OF) 178 178 178 178 178
Ty, (°F) 309.9692 | 393.7360 | 405.5055 | 41k.6332 | 425.0640

The velues of TJ'.x for other positions z.n the medium can also be
determined readily by direct substitution of the corresponding values of
Tg and € into (7.4.6). Comparing (4.4.6) with (7.4.6), we observe
that as a result of the first heat pulse, the temperature corresponding
to the incipient yielding in the plastically deformed region has ‘peen

raised by a factor of

T K
R S R
[L+121/2 v, (= +—21_s -o] .

1~ Turther note from the results presented in Table T-2 that 1f the
maximm emplitude T or T of the first heat pulse remains within
certain limit, no further plastic flow will be induced by the second
heat pulse having the same amplitude as the firet one. The case where
T, = 300 F may serve to illustrate this point (Table 7-2). On the other
hand, if the maximum amplitude of the first pulse exceeds this limit,

and the maximum amplitude of the second pulse is equal to that of the
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first pulse, further plastic flow will be induced, and plastic strains
will tend to accumulate. This confention is borne out by an inspection
of the cases where T,  or T. 1is equal to 400°F, 500°F, 600°F and
700°F (Table 7-2).

For a more detailed determination of the plastic flow during a
second heat pulse a camplete analysis, comparable to that presented for
the first heat pulse, is needed. Although we have not pursued this
analysis, the procedures outlined in this work are applicable and

sufficient for the study of any subsequent heat pulses.
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APFENDIX A

Maximum Temperature Distribution Curves Used for the Determination of
the Positions R of the Total Plastically Deformed and Steady

; &nd Ry,

State Plastic Region in Plates. (Figs. T-3, T-4).

Fig. A-1 For the Plate With the Boundary at x = I Subjected to a Heat
Pulse and With the Other Boundary at x = o Maintained at

Zero Temperature.

Fig. A-2 For the Plate With the Boundary at x = L Subjected to a Heat

Pulse and With the Other Boundary at x = o Insulated.
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APPENDIX B
Derivation of Plastic Stress Strain Relations s and 8 Given by

(a) and (b) in (4.4.24)

The relation (4.4.13) in principal stress spece may be written as

2
s = = si(7) ,
r=1
Bf(7)/a'f
(r) i (4.4.13) R
8 an/ag (ar('”/a‘-k af(7)/a1-k)v§
the yield functions are given by
v, -V
1) XL . (y,-Br+ 1_1; 2“Pjg:) , (4.4.8) R
v, -V
#2) _ x 2 ‘(Vo‘m+i{_.s'2“pi-') , (4.4.9) R
RCO I Sl
2 2 ?
2 v. -7V T
f(),x22,__;.2., (4.4.10) R
H= (yo =BT+ = 24 _5._)



Recalling that
T =0 , T =7
xx Yy 2z
and
v

vx=-2/3'ryy=-2/31:zz ,

vy = 1/3 Ty 7 V2= 1/3 S (a)

By (4.4.8), (4.%.9), (4.4.10) and (a), we obtain

bf(l)/b‘rxx =12 af(l')/aryy =-1/2
(b)
ar(l)/avx =12 , ar(l)/avy -1/ , ap(l)/avz =0 ,

and

bf(a)/a'rxx =12 , Bf(a)/b'rzz - -1 ,

(c)
w2 =1, ¥y a0, # Py <1
By (4.4.8), (4.4.9) and (4.%.10) it was found that
EPE = (1/1-8) /B w,
(a)

NGO YN O
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By (a), (b) and (d), the following results are obtained:

1/2
(af(l)/a,,k af(l)/a.,k)

152

- e aeWp o Bf(l)/b'ryy bf(l)/&tyy 2l

3(1) /&rzz)l/e

1/2 1/2
= {1/2 1/2 + (- 1/2)(- 1/2) + 0 0] = (1/2) |, (e)

(bF(l)/avk ‘.’k + ar(l)/ar '1‘)
= (ar(l)/bvx :'x + bF(l)/bvy w.ry + aF(l)/bvz :rz + 31-"(1)/6'1' 'J..')
= 11/2 (=25 T )4 (- 1/2)1/35) + 0 (15 %) + B)

=-1/2;yy+13'i= . (£)

Similarly, it was found that

1/2 1/2
@@, @) L ()
and
@y v+ @) 1)
= -1/ T+ BT (n)

v
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Substituting (b), (c): (d)’ (e): (f): (8): and (h) in (1‘"""13):

we finally obtain

l L] L
= ( -1/27%_ + BT)
1 1/2 Yy
= u_(1/3)
l-s 'p (a) in (4.4.1%)

112—- {- 1/2 ‘;'yy+ B’i‘)

(b) in (L4.k4.14)
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APPENDIX C

Reduction of the Strain Hardening 8olution to Perfectly Plastic Solution

It will be shown in what follows that (5.2.6) is reducible from
(4.4.16).

We recall that

u(l-zyl) .
€ = [————E-i-—- B+3] T , (5.2.6)R

and

¢ = N'i.' ’ (%.4.16)R

where

N_[Q+M]-M[M - __.]

b

2B E (1-8) - 2 E, upJ'LV'

(4.4.17)R
El(l-s)+2(lV)p ,/V_
We now define
W1-271/)
= [ ( Vl B+ 3]. (a)

Yop E

Ir My in (4.4.17) is set equal to zero, N should be reducible to

Npp' N may be rewritten as

N=0Ca -

Lu+ /3 (18) 2 ;p“ (v)
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Substituting M given by (4.4.17) in the quantity (2B-M)/2up,

Ve eventually have

2B (l-]/l) +EQ
. B (1-8) + 21-2) w /75

If up is set equal to zero, corresponding to a perfectly plastic

material, the following results are obtained.

M=2B , B=MP/$LE=0

(a)
2B(1- Vl) +E o
My =V E

Now, if (d) is substituted back in (b), we obtain

21, 23(1-1/1)
KeQ === 2B+, 3 3 [ al
S A
Ly u1-2.)
=Qq - —= B 1l p+2a
E TR
4(1- 201)
= £ B+ 30]=Npp



DISTRIBUTION LIST*

ATR FORCE OFFICE OF SCIENTIFIC RESEARCH
MECHANTCS DIVISION
- SOLID MECHANICS -

AIR FOR

ASTIA

ATTN: TIPCR
Arlington Hall Station
Arlington 12, Virginia

(10 copies)

AFOSR

ATTN: SRHM (2 copies)
ATTN: SRGL (2 copies)
Washington 25, D. C.

EOOAR (2 copies)

Shell Building
47 Rue Cantersteen
Brussels, BELGIUM

AEDC

ATTN: AEOIM

Arnold Air Force Station
Tennessee

AFFTC
ATTN: FTOTL
Edwards AF Base, California

AFMDC
ATTN: HDOI
Holloman AF Base, New Mexico

APMTC
ATTN: AFMTC Tech Library-MU-135
Patrick AF Base, Florida

AFOSR (SRLTL)
Holloman AF Base, New Mexico

Aeronautical Systems Division

ATTN: WWAD (2 copies)
ATTN: WWRMCM (1 copy)
ATTN: ASRNGC (1 copy)

Wright-Patterson AF Base, Ohio

*
One copy unless ctherwise noted.

ARL (OAR)
Wright-Patterson AF Base, Ohio

(2 copies)

Institute of Technology Library (AU)
MCLI-LIB Bldg. 125, Area B
Wright-Patterson Air Force Base, Ohio

APCC (PGAPI)
Elgin AFB, Florida

AFCRL

ATTN: CRRELA

L. G. Hanscomb Field
Bedford, Massachusetts

(2 copies)

AFSWC (SWOr)
Kirtland AF Base, New Mexico

ARMY

Director BRL
ATTN: Library
Aberdeen Proving Ground, Maryland

Office of Ordnance Research
Box CM

Duke Station

Durham, North Carolina

Army Rocket and Guided Missile Agency
ATTN: Technical Library
Redstone Arsenal, Alabama

Signal Corps Engineering Laboratory
ATTN: SIGFMIEL-RPO
Fort Monmouth, New Jersey

Office of the Chief of R and D
ATTN: Scientific Information
Department of the Army



NAVY

Office of Naval Research (2 copies)
ATTN: Mechanies Branch (1 copy
ATTN: Airbranch (1 copy

Washington 25, D. C.

Naval Research Laboratory
ATTN: Documents Library
Washington 25, D. C.

Naval Ordnance Laboratory
ATTN: Library
White Oek, Maryland

David Taylor Model Basin
Aerodynamics Laboratory
ATTN: Library
Washington 7, D. C.

Chief, Bureau of Ordnance

Department of the Navy

ATTN: Special Projects Office, SP-2722
Washington 25, D. C.

OTHER GOVERMMENT

NASA

ATTN: Document Library
1502 H Street, N.W.
Washingtoan 25, D, C.

Ames Research Center (NASA)
ATTN: Technical Library
Moffett Field, California

AFOSR

ATTN: SRHM

ATTN: SRGL
Washington 25, D. C.

(2 copies)

High Speed Flight Station (NASA)
ATTN: Technical Library
Edwards AFB, California

Langley Research Center (NASA)
ATTN: Technical Library
langley AFB, Virginia

Lewis Research Center (RASA)
ATTN: Technical Library
21000 Brookpark Road
Cleveland 35, Ohio

National Bureau of Standards
U.S. Department of Commerce
ATTN: Technical Reports Section
Washington 25, D. C.

Office of Technical Services
U.S. Department of Commerce
ATTN: Technical Reports Section
Washington 25, D. C.

National Science Foundation

ATTN: Engineering Sciences Division
1951 Constitution Ave., N.W.
Washington 25, D. C.

U. S. Atomic Energy Commission
Technical Information Extension
P. 0. Box 62

Oak Ridge, Tennessee

U. S. Atomic Energy Commission
Technical Information Service

1901 Constitution Ave., N. W.

Washington 25, D. C.

JOURNALS

Southwest Research Institute
ATTN: Applied Mechanics Reviews
8500 Culebra Road

San Antonic 6, Texas

Aeronautical Engineering Review
2 Bast 64th Street
New York 21, N. Y.

Institute of Aeronautical Sclences
ATTN: Library

2 Bast 64th Street

New York 21, N. Y.

(2 copies



-

FOREIGN ORGANIZATIONS

Chairman

Canadian Joint Staff (DRB/DSIS)
2450 Massachusetts Ave., N. W.
Washington 25, D. C.

Director
National Aeronautical Establishment
Ottawa, Ontario, CANADA

University of Toronto
Institute of Aerophysics
ATTN: Library

Toronto 5, CANADA

Training Center for Experimental
Aerodynamics, ATTN: Library
Rhode-Saint-Genese (Belgique)
T2, Chaussee de Waterloo
Brussels, BELGIWM

Library (Route to Dr. W. P. Jones)
Aeronauticael Research Council
National Physical Laboratory
Teddington, ENGLAND

EDUCATIONAL INSTITUTIONS

Auburn University
Dept. of Mechanical Engineering
Auburn, Alabems

Brown University
Gifts and Exchanges Library
Providence 12, Rhode Island

University of California
Engineering Department
ATTN: Library

Los Angeles 24, California

California Institute of Technology
ATTR: JPL Library

4800 Oak Grove Drive

Pasadena 4, California

California Institute of Technology
Guggenheim Aeronautical Laboratory
ATTN: Aeronautics Library

(Route to Prof. Liepmann)
Pasadena 4, California

Colorado State University
Department of Civil Engineering
ATTN: Prof. J. E. Cermak, ASCE
Fort Collins, Colorado

Columbia University

Dept. of Civil Eng. and Eng. Mechanics
ATTN: Library (Route to Prof.G.Herrmann)
New York 27, N. Y. ’

University of Florida
Engineering Mechanics Department
ATIN: Library

Gainesville, Florida

Harvard University

Department of Engineering Sciences
ATTN: Library

Cambridge 38, Massachusetts

John Crerar Library
86 E. Randolph Street
Chicago 1, Illincis

The Johns Hopkins University

Dept. of Mechanics, ATTN: Library
(Route to Profs. Clauser and Corrsin)
Baltimore 18, Maryland

Massachusetts Institute of Technology
ATTN: Aeronautics Library
Cambridge 39, Massachusetts

Massachusetts Institute of Technology
ATTN: Tech Collection (2 copies)
X Collection
148-226
Cambridge 39, Massachusetts

Midwest Research Institute
ATTN: Library

425 Volker Boulevard
Kansas City 10, Missouri



Noxrth Carolina State College
Division of Engineering Research
ATTN: Technical Library
Raleigh, North Carolina

Polytechnic Institute of Brooklyn
ATTN: Library

333 Jay Street

Brooklyn 1, N. Y.

Pennsylvania State University
Dept. of Aeronautical Engineering
ATTN: Library

University Park, Pennsylvania

The James Forrestal Recearch Center
Princeton University

ATTN: Library (Rte. to Prof.S.Bogdonoff)
Princeton, New Jersey

Princeton University

Dept. of Aeronautical Engineering
ATTN: Library

Princeton, New Jersey

Rensselaer Polytechnic Institute
Dept. of Aercnautical Engineering
ATTN: Library
Troy, New York

Stanford Research Institute
Documents Center

ATTN: Acquisitions

Menlo Park, California

Stanford University

Dept. of Aeronauticel Engineering
ATTN: Library

Stanford, California

Defense Research laboratory
University of Texas

P. 0. Box 8029

Austin 12, Texas

New York University

Institute of Mathematical Sciences
ATTN: Library

New York 3, N. Y.

Yale University

Dept. of Mechanical Engineering
ATTN: Library (Rte. to Dr.P.Wegener)
New Haven 10, Connecticut

INDUSTRIAL ORGANIZATIONS

Allied Research Assoclates

ATTN: Library (Rte. to Dr.T.R.Goodman)
43 Leon Street

Boston 5, Massachusetts

Bell Aerosystenm
ATTN: Library
P. 0. Box 1
Buffalo 5, N. Y.

Boeing Scientific Research Laboratories
ATTN: Research Library
P. 0. Box 3981 _
Seattle 24, Washington

Chance-Vought Aircraft, Inc.
ATTN: Library
Dallas, Texas

Convair

Fort Worth Division
ATTN: Library
Fort Worth 1, Texas

Convair-San Diego
ATTN: Engineering Library
San Diego 12, California

Cornell Aeronautical Leboratories, Inc.
ATTN: Library

4455 Genesse Street

Buffalo 21, N. Y.

Convair Scientific Research Laboratory

ATTN: Library (Route to Chief,
Applied Research)

P. 0. Box 950

San Diego 12, California

Douglas Aircraft Company, Inc.
ATTN: Library

3000 Ocean Park Boulevard
Santa Monica, llfornia



.-

Flight Sciences lLaboratory

ATTN: Library (Rte. to Dr.J.Isenberg)
1965 Sheridan Ave.

Buffalo 23, N. Y.

Unified Science Associates, Inc.
ATTN: S. Naiditch, President
926 S. Arroyo Parkway

Pasadena, California

General Electric Coampany
Research laboratory

P. 0. Box 1088
Schenectady 5, N. Y.

Grumman Aircraft Engineering Corp.
ATTN: Library
Bethpage, L. I., New York

Hughes Aircraft Company

Research and Development Laboretories
ATTN: Library

Culver City, California

Lockheed Aircraft Corporation
ATTN: Library

P. 0. Box 551

Burbank, California

Lockheed Aircraft Corporation
ATTN: Library
Baltimore 3, Maryland

The Martin Company
ATTN: Library
Baltimore 3, Maryland

McDonnell Aircraft Company
P. 0. Box 516

ATTN: Library

St. Louis 66, Missouri

North American Aviation, Inc.
Missile Division

ATTN: Library

12214 Lakewood Boulevard
Downey, California

The Martin Company
ATTN: Library
Hawthorne, California

Rand Corporation
1700 Main Street
Santa Monica Californin

(2 copies)

Republic Aviation Corporation
ATTN: Library
Farmingdale, L.I., New York

United Aircraft Corporation
Research Department (Library)
400 Main Street

BEast Hartford 8, Conmecticut

Douglas Aircraft Company, Inc.
ATTN: Library

827 lapham Street

El Segundo, California

MSVD Library

General Electric Company

ATTN: L. Chasen, Manager - Library
M/F Dr. F. W. Wendt

Valley Forge Space Technology Center

King of Prussia, Pennsylvania

Giannini Controls Corporation
8 Leopard Road

ATTN: Mr. M. B. Zisfein
Berwyn, Pennsylvania

Northrop Airecraft, Inc.
ATTN: Library
Hawthorne, California

EDUCATIONAL INSTITUTIONS

The Johns Hopkins University

Applied Physics Laboratory Library
8621 Georgia Avenue

Silver Spring, Marylend



